ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe a simple method to derive high performance semidefinite programming relaxations for optimizations over complex and real operator algebras in finite dimensional Hilbert spaces. The method is very flexible, easy to program and allows the us er to assess the behavior of finite dimensional quantum systems in a number of interesting setups. We use this method to bound the strength of quantum nonlocality in bipartite and tripartite Bell scenarios where the dimension of a subset of the parties is bounded from above. We derive new results in quantum communication complexity and prove the soundness of the prepare-and-measure dimension witnesses introduced in [Phys. Rev. Lett. 105, 230501 (2010)]. Finally, we propose a new dimension witness that can distinguish between classical, real and complex two-level systems.
Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security of quantum information protocols independently of imperfections in the measuring devices. Here we present a similar procedure for witnessing ent angled measurements, which play a central role in many quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized quantum preparations of fixed Hilbert space dimension. Using a photonic setup, we experimentally certify an entangled measurement using measurement statistics only. We also apply our techniques to certify unentangled but nevertheless inherently quantum measurements.
We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency arbitrarily close to 1/N can be tolerated using N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to 61.8% using four-dimensional systems. Experimental perspectives for our schemes look promising considering recent progress in atom-photon entanglement and in photon hyperentanglement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا