ﻻ يوجد ملخص باللغة العربية
We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency arbitrarily close to 1/N can be tolerated using N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to 61.8% using four-dimensional systems. Experimental perspectives for our schemes look promising considering recent progress in atom-photon entanglement and in photon hyperentanglement.
Recent experiments have reached detection efficiencies sufficient to close the detection loophole with photons. Both experiments ran multiple successive trials in fixed measurement configurations, rather than randomly re-setting the measurement confi
We propose a feasible optical setup allowing for a loophole-free Bell test with efficient homodyne detection. A non-gaussian entangled state is generated from a two-mode squeezed vacuum by subtracting a single photon from each mode, using beamsplitte
A common problem in Bell type experiments is the well-known detection loophole: if the detection efficiencies are not perfect and if one simply post-selects the conclusive events, one might observe a violation of a Bell inequality, even though a loca
Bells theorem is based on three assumptions: realism, locality, and measurement independence. The third assumption is identified by Bell as linked to the freedom of choice hypothesis. He holds that ultimately the human free will can ensure the measur
We study the problem of certifying quantum steering in a detection-loophole-free manner in experimental situations that require post-selection. We present a method to find the modified local-hidden-state bound of steering inequalities in such a post-