ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the QCD phase diagram by using the strong-coupling expansion of the lattice QCD with one species of staggered fermion and the Polyakov loop effective action at finite temperature (T) and quark chemical potential (mu). We derive an anal ytic expression of effective potential Feff including both the chiral (U(1)) and the deconfinement (Z_Nc) dynamics with finite coupling effects in the mean-field approximation. The Polyakov loop increasing rate (dl/dT) is found to have two peaks as a function of T for small quark masses. One of them is the chiral-induced peak associated with the rapid decrease of the chiral condensate. The temperature of the other peak is almost independent of the quark mass or chemical potential, and this peak is interpreted as the Z_Nc-induced peak.
We discuss the QCD phase diagram in the strong coupling limit of lattice QCD by using a new type of mean field coming from the next-to-leading order of the large dimensional expansion. The QCD phase diagram in the strong coupling limit recently obtai ned by using the monomer-dimer-polymer (MDP) algorithm has some differences in the phase boundary shape from that in the mean field results. As one of the origin to explain the difference, we consider another type of auxiliary field, which corresponds to the point-splitting mesonic composite. Fermion determinant with this mean field under the anti-periodic boundary condition gives rise to a term which interpolates the effective potentials in the previously proposed zero and finite temperature mean field treatments. While the shift of the transition temperature at zero chemical potential is in the desirable direction and the phase boundary shape is improved, we find that the effects are too large to be compatible with the MDP simulation results.
We investigate the QCD phase diagram based on the strong coupling expansion of the lattice QCD with one species of the staggered fermions at finite temperature (T) and chemical potential (mu). We analytically derive an effective potential including b oth chiral and deconfinement (Z_3) dynamics with finite coupling effects in mean-field approximations. We focus on Polyakov loop properties in whole T-mu plane, and study relations between the chiral and deconfinement crossovers. At a fixed large mu, sequencial rapid variations of the Polyakov loop are observed with increasing T. It is natural to interprete them as the chiral induced and Z_3 induced deconfinement crossovers.
We investigate the chiral phase transition in the strong coupling lattice QCD at finite temperature and density with finite coupling effects. We adopt one species of staggered fermion, and develop an analytic formulation based on strong coupling and cluster expansions. We derive the effective potential as a function of two order parameters, the chiral condensate sigma and the quark number density $rho_q$, in a self-consistent treatment of the next-to-leading order (NLO) effective action terms. NLO contributions lead to modifications of quark mass, chemical potential and the quark wave function renormalization factor. While the ratio mu_c(T=0)/Tc(mu=0) is too small in the strong coupling limit, it is found to increase as beta=2Nc/g^2 increases. The critical point is found to move in the lower T direction as beta increases. Since the vector interaction induced by $rho_q$ is shown to grow as beta, the present trend is consistent with the results in Nambu-Jona-Lasinio models. The interplay between two order parameters leads to the existence of partially chiral restored matter, where effective chemical potential is automatically adjusted to the quark excitation energy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا