ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate a calculation method for solving the Mukhanov-Sasaki equation in slow-roll $k$-inflation based on the uniform approximation (UA) in conjunction with an expansion scheme for slow-roll parameters with respect to the number of $e$-folds a bout the so-called textit{turning point}. Earlier works on this method has so far gained some promising results derived from the approximating expressions for the power spectra among others, up to second order with respect to the Hubble and sound flow parameters, when compared to other semi-analytical approaches (e.g., Greens function and WKB methods). However, a closer inspection is suggestive that there is a problem when higher-order parts of the power spectra are considered; residual logarithmic divergences may come out that can render the prediction physically inconsistent. Looking at this possibility, we map out up to what order with respect to the mentioned parameters several physical quantities can be calculated before hitting a logarithmically divergent result. It turns out that the power spectra are limited up to second order, the tensor-to-scalar ratio up to third order, and the spectral indices and running converge to all orders. This indicates that the expansion scheme is incompatible with the working equations derived from UA for the power spectra but compatible with that of the spectral indices. For those quantities that involve logarithmically divergent terms in the higher-order parts, existing results in the literature for the convergent lower-order parts calculated in the equivalent fashion should be viewed with some caution; they do not rest on solid mathematical ground.
We look at the question posed by Parker et al. about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll $k$-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale invariant power spectra. Furthermore, extending to non-minimal $k$-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.
81 - Kazuya Yasuda 2014
In the study of quantum process algebras, researchers have introduced different notions of equivalence between quantum processes like bisimulation or barbed congruence. However, there are intuitively equivalent quantum processes that these notions do not regard as equivalent. In this paper, we introduce a notion of equivalence named observational equivalence into qCCS. Since quantum processes have both probabilistic and nondeterministic transitions, we introduce schedulers that solve nondeterministic choices and obtain probability distribution of quantum processes. By definition, the restrictions of schedulers change observational equivalence. We propose some definitions of schedulers, and investigate the relation between the restrictions of schedulers and observational equivalence.
The constraint on the $R$-parity violating supersymmetric interactions is discussed in the light of current experimental data of the electric dipole moment of neutron, $^{129}$Xe , $^{205}$Tl, and $^{199}$Hg atoms, and YbF and ThO molecules. To inves tigate the constraints without relying upon the assumption of the dominance of a particular combination of couplings over all the rest, an extensive use is made of the linear programming method in the scan of the parameter space. We give maximally possible values for the EDMs of the proton, deuteron, $^3$He nucleus, $^{211}$Rn, $^{225}$Ra, $^{210}$Fr, and the $R$-correlation of the neutron beta decay within the constraints from the current experimental data of the EDMs of neutron, $^{129}$Xe, $^{205}$Tl, and $^{199}$Hg atoms, and YbF and ThO molecules using the linear programming method. It is found that the $R$-correlation of the neutron beta decay and hadronic EDMs are very useful observables to constrain definite regions of the parameter space of the $R$-parity violating supersymmetry.
The contribution of the R-parity violating trilinear couplings in the supersymmetric model to the fermion electric dipole moment is analyzed at the two-loop level. We show that in general, the Barr-Zee type contribution to the fermion electric dipole moment with the exchange of W and Z bosons is not small compared to the currently known photon exchange one with R-parity violating interactions. We will then give new upper bounds on the imaginary parts of R-parity violating couplings from the experimental data of the electric dipole moments of the electron and of the neutron. The effect due to bilinear R-parity violating couplings, which needs to be investigated separately, is not included in our analyses.
The method of a conformal transformation is applied to a general class of single field inflation models with non-minimal coupling to gravity and non-standard kinetic terms, in order to reduce the cosmological perturbative calculation to the conventio nal minimal coupling case to all orders in perturbation theory. Our analysis is made simple by the fact that all perturbation variables in the comoving gauge are conformally invariant to all orders. The structure of the vacuum, on which cosmological correlation functions are evaluated, is also discussed. We show how quantization in the Jordan frame for non-minimally coupled inflation models can be equivalently implemented in the Einstein frame. It is thereafter argued that the general N-point cosmological correlation functions (of the curvature perturbation) are independent of the conformal frame.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا