ترغب بنشر مسار تعليمي؟ اضغط هنا

We have carried out a photometric and spectroscopic survey of bright high-amplitude delta Scuti (HADS) stars. The aim was to detect binarity and multiperiodicity (or both) in order to explore the possibility of combining binary star astrophysics with stellar oscillations. Here we present the first results for ten, predominantly southern, HADS variables. We detected the orbital motion of RS Gru with a semi-amplitude of ~6.5 km/s and 11.5 days period. The companion is inferred to be a low-mass dwarf star in a close orbit around RS Gru. We found multiperiodicity in RY Lep both from photometric and radial velocity data and detected orbital motion in the radial velocities with hints of a possible period of 500--700 days. The data also revealed that the amplitude of the secondary frequency is variable on the time-scale of a few years, whereas the dominant mode is stable. Radial velocities of AD CMi revealed cycle-to-cycle variations which might be due to non-radial pulsations. We confirmed the multiperiodic nature of BQ Ind, while we obtained the first radial velocity curves of ZZ Mic and BE Lyn. The radial velocity curve and the O-C diagram of CY Aqr are consistent with the long-period binary hypothesis. We took new time series photometry on XX Cyg, DY Her and DY Peg, with which we updated their O-C diagrams.
We used HARPS to measure oscillations in the low-mass star tau Cet. Although the data were compromised by instrumental noise, we have been able to extract the main features of the oscillations. We found tau Cet to oscillate with an amplitude that is about half that of the Sun, and with a mode lifetime that is slightly shorter than solar. The large frequency separation is 169 muHz, and we have identified modes with degrees 0, 1, 2, and 3. We used the frequencies to estimate the mean density of the star to an accuracy of 0.45% which, combined with the interferometric radius, gives a mass of 0.783 +/- 0.012 M_sun (1.6%).
Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا