ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

83   0   0.0 ( 0 )
 نشر من قبل Fabien Carrier
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.



قيم البحث

اقرأ أيضاً

We have observed oscillations in the nearby G2 subgiant star beta Hyi using high-precision velocity observations obtained over more than a week with the HARPS and UCLES spectrographs. The oscillation frequencies show a regular comb structure, as expe cted for solar-like oscillations, but with several l=1 modes being strongly affected by avoided crossings. The data, combined with those we obtained five years earlier, allow us to identify 28 oscillation modes. By scaling the large frequency separation from the Sun, we measure the mean density of beta Hyi to an accuracy of 0.6%. The amplitudes of the oscillations are about 2.5 times solar and the mode lifetime is 2.3 d. A detailed comparison of the mixed l=1 modes with theoretical models should allow a precise estimate of the age of the star.
186 - Wuming Yang 2018
textbf{Scaling formulas were} deduced to describe the relations between the fundamental stellar parameters and the mean textbf{linewidth and lifetime} of solar-like oscillations of stars. The mean textbf{linewidth and} lifetime of solar-like oscillat ions textbf{are dependent on the large frequency separation, the effective temperature, and the acoustic impedance ($rho c$) in the photosphere} of stars. The mean lifetime textbf{can be} approximate to the lifetime of the mode with $ usim u_{max}$. We compared the results of the scaling relations with the mean lifetimes of solar-like oscillations of stars observed by textit{Kepler} and textit{CoRoT}, which shows that the observed mean lifetimes are reproduced well by the scaling relations. The dependence of the mean lifetime on textbf{the} large frequency separation, the effective temperature, and the acoustic impedance of stars textbf{indicates} that lifetimes of solar-like oscillations rely on the mass and evolutionary phase of stars. Moreover, our calculations show that the mean lifetimes of $p$-modes of stars can be affected by metallicity abundances.
We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with eleven telescopes. A new method for adjusting the data wei ghts allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges that we identify with even and odd values of the angular degree (l=0 and 2, and l=1 and 3, respectively). We interpret a strong, narrow peak at 446 muHz that lies close to the l=1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of about 1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29 +0.55/-0.49 days, which is significantly shorter than the 2-4 days seen in the Sun.
Recently, the availability of new high-spatial and -temporal resolution observations of the solar photosphere has allowed the study of the oscillations in small magnetic elements. Small magnetic elements have been found to host a rich variety of osci llations detectable as intensity, longitudinal or transverse velocity fluctuations which have been interpreted as MHD waves. Small magnetic elements, at or below the current spatial resolution achieved by modern solar telescopes, are though to play a relevant role in the energy budget of the upper layers of the Suns atmosphere, as they are found to cover a significant fraction of the solar photosphere. Unfortunately, the limited temporal length and/or cadence of the data sets, or the presence of seeing-induced effects have prevented, so far, the estimation of the power spectra of kink-like oscillations in small magnetic elements with good accuracy. Motivated by this, we studied kink-like oscillations in small magnetic elements, by exploiting very long duration and high-cadence data acquired with the Solar Optical Telescope on board the Hinode satellite. In this work we present the results of this analysis, by studying the power spectral density of kink-like oscillations on a statistical basis. We found that small magnetic elements exhibit a large number of spectral features in the range 1-12 mHz. More interestingly, most of these spectral features are not shared among magnetic elements but represent a unique signature of each magnetic element itself.
We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scale s relevant for baryon acoustic oscillations (BAO). Our findings are (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/N) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z=1 and 0, respectively. (2) There is little information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results. (3) The distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift distortions. (5) For an actual galaxy survey, the additional shot noise contamination compromises the cosmological information inherent in the galaxy power spectrum, but also mitigates the impact of non-Gaussian errors. The S/N is degraded by up to 30% for a WFMOS-type survey. (6) The finite survey volume causes additional non-Gaussian errors via the correlations of long-wavelength fluctuations with the fluctuations we want to measure, further degrading the S/N values by about 30% even at high redshift z=3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا