ترغب بنشر مسار تعليمي؟ اضغط هنا

We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at IRAC wavelengths, the fifth is visible only at 24 microns. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS~2, have caused an outflow to the NE and SW of the central subcluster. The southern lobe of hot ionised gas is detected in X-rays; shocked gas and heated dust from the shock-front are detected with Spitzer at 4.5 and 24 microns. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 & 5.8 micron observations of the cluster DBS2003-124, NE of RCW 38, where 33 candidate YSOs are identified. One star associated with the cluster drives a parsec-scale jet. Two candidate HH objects associated with the jet are visible at IRAC and MIPS wavelengths. The jet extends over a distance of ~3 pc. Assuming a velocity of 100 km/s for the jet material gives an age of about 30,000 years, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.
116 - J. Kauffmann 2011
We report the detection of a compact (of order 5 arcsec; about 1800 AU projected size) CO outflow from L1148-IRS. This confirms that this Spitzer source is physically associated with the nearby (about 325 pc) L1148 dense core. Radiative transfer mode ling suggests an internal luminosity of 0.08 to 0.13 L_sun. This validates L1148-IRS as a Very Low Luminosity Object (VeLLO; L < 0.1 L_sun). The L1148 dense core has unusually low densities and column densities for a star-forming core. It is difficult to understand how L1148-IRS might have formed under these conditions. Independent of the exact final mass of this VeLLO (which is likely < 0.24 M_sun), L1148-IRS and similar VeLLOs might hold some clues about the isolated formation of brown dwarfs.
We present adaptive optics (AO) near-infrared (JHKs) observations of the deeply embedded massive cluster RCW 38 using NACO on the VLT. Narrowband AO observations centered at wavelengths of 1.28, 2.12, and 2.17 micron were also obtained. The area cove red by these observations is about 0.5 pc square, centered on the O star RCW 38 IRS2. We use the JHKs colors to identify young stars with infrared excess. Through a detailed comparison to a nearby control field, we find that most of the 337 stars detected in all three infrared bands are cluster members (~317), with essentially no contamination due to background or foreground sources. Five sources have colors suggestive of deeply embedded protostars, while 53 sources are detected at Ks only; their spatial distribution with respect to the extinction suggests they are highly reddened cluster members. Detectable Ks-band excess is found toward 29 +/- 3 % of the stars. For comparison to a similar area of Orion observed in the near-infrared, mass and extinction cuts are applied, and the excess fractions redetermined. The resulting excesses are then 25 +/- 5 % for RCW 38, and 42 +/- 8 % for Orion. RCW 38 IRS2 is shown to be a massive star binary with a projected separation of ~500 AU. Two regions of molecular hydrogen emission are revealed through the 2.12 micron imaging. One shows a morphology suggestive of a protostellar jet, and is clearly associated with a star only detected at H and Ks, previously identified as a highly obscured X-ray source. Three spatially extended cometary-like objects, suggestive of photoevaporating disks, are identified, but only one is clearly directly influenced by RCW 38 IRS2. A King profile provides a reasonable fit to the cluster radial density profile and a nearest neighbor distance analysis shows essentially no sub-clustering.
We have observed the deuterated gas in the high-mass star formation region IRAS 05345+3157 at high-angular resolution, in order to determine the morphology and the nature of such gas. We have mapped the N2H+ (1-0) line with the Plateau de Bure Interf erometer, and the N2D+ (3-2) and N2H+ (3-2) lines with the Submillimeter Array. The N2D+ (3-2) integrated emission is concentrated in two condensations, with masses of 2-3 and 9 M_sun and diameters of 0.05 and 0.09 pc, respectively. The high deuterium fractionation (0.1) and the line parameters in the N2D+ condensations indicate that they are likely low- to intermediate-mass pre-stellar cores, even though other scenarios are possible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا