ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer observations of Bow Shocks and Outflows in RCW 38

113   0   0.0 ( 0 )
 نشر من قبل Elaine Winston
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report Spitzer observations of five newly identified bow shocks in the massive star-forming region RCW 38. Four are visible at IRAC wavelengths, the fifth is visible only at 24 microns. Chandra X-ray emission indicates that winds from the central O5.5 binary, IRS~2, have caused an outflow to the NE and SW of the central subcluster. The southern lobe of hot ionised gas is detected in X-rays; shocked gas and heated dust from the shock-front are detected with Spitzer at 4.5 and 24 microns. The northern outflow may have initiated the present generation of star formation, based on the filamentary distribution of the protostars in the central subcluster. Further, the bow-shock driving star, YSO 129, is photo-evaporating a pillar of gas and dust. No point sources are identified within this pillar at near- to mid-IR wavelengths. We also report on IRAC 3.6 & 5.8 micron observations of the cluster DBS2003-124, NE of RCW 38, where 33 candidate YSOs are identified. One star associated with the cluster drives a parsec-scale jet. Two candidate HH objects associated with the jet are visible at IRAC and MIPS wavelengths. The jet extends over a distance of ~3 pc. Assuming a velocity of 100 km/s for the jet material gives an age of about 30,000 years, indicating that the star (and cluster) are likely to be very young, with a similar or possibly younger age than RCW 38, and that star formation is ongoing in the extended RCW 38 region.

قيم البحث

اقرأ أيضاً

We briefly introduce the VLBI maser astrometric analysis of IRAS 18043-2116 and IRAS 18113-2503, two remarkable and unusual water fountains with spectacular bipolar bow shocks in their high-speed collimated jet-driven outflows. The 22 GHz H2O maser s tructures and velocities clearly show that the jets are formed in very short-lived, episodic outbursts, which may indicate episodic accretion in an underlying binary system.
83 - A. Schulz , M. Haupt , S. Klepser 2016
Runaway stars form bow shocks by sweeping up interstellar matter in their direction of motion. Theoretical models predict a spectrally wide non-thermal component reaching up to gamma-ray energies at a flux level detectable with current instruments. T hey were motivated by a detection of non-thermal radio emission from the bow shock of BD$+43^circ3654$ and a possible detection of non-thermal X-rays from AE Aurigae. A search in the high-energy regime using data from textit{Fermi}-LAT resulted in flux upper limits for 27 candidates listed in the first E-BOSS catalogue. We perform the first systematic search for TeV emission from bow shocks of runaway stars. Using all available archival H.E.S.S. I data we search for very-high-energy gamma-ray emission at the positions of bow shock candidates listed in the second E-BOSS catalogue. This catalogue comprises 73 bow shock candidates, 32 of which have been observed with the H.E.S.S. telescopes. None of the observed bow shock candidates shows significant emission in the H.E.S.S. energy range. The resulting upper limits are used to constrain current models for non-thermal emission from these objects.
We present adaptive optics (AO) near-infrared (JHKs) observations of the deeply embedded massive cluster RCW 38 using NACO on the VLT. Narrowband AO observations centered at wavelengths of 1.28, 2.12, and 2.17 micron were also obtained. The area cove red by these observations is about 0.5 pc square, centered on the O star RCW 38 IRS2. We use the JHKs colors to identify young stars with infrared excess. Through a detailed comparison to a nearby control field, we find that most of the 337 stars detected in all three infrared bands are cluster members (~317), with essentially no contamination due to background or foreground sources. Five sources have colors suggestive of deeply embedded protostars, while 53 sources are detected at Ks only; their spatial distribution with respect to the extinction suggests they are highly reddened cluster members. Detectable Ks-band excess is found toward 29 +/- 3 % of the stars. For comparison to a similar area of Orion observed in the near-infrared, mass and extinction cuts are applied, and the excess fractions redetermined. The resulting excesses are then 25 +/- 5 % for RCW 38, and 42 +/- 8 % for Orion. RCW 38 IRS2 is shown to be a massive star binary with a projected separation of ~500 AU. Two regions of molecular hydrogen emission are revealed through the 2.12 micron imaging. One shows a morphology suggestive of a protostellar jet, and is clearly associated with a star only detected at H and Ks, previously identified as a highly obscured X-ray source. Three spatially extended cometary-like objects, suggestive of photoevaporating disks, are identified, but only one is clearly directly influenced by RCW 38 IRS2. A King profile provides a reasonable fit to the cluster radial density profile and a nearest neighbor distance analysis shows essentially no sub-clustering.
257 - Odysseas Dionatos 2020
Large scale spectral maps of star forming regions enable the comparative study of the gas excitation around an ensemble of sources at a common frame of reference, providing direct insights in the multitude of processes involved. In this paper we empl oy spectral-line maps to decipher the excitation, the kinematical and dynamical processes in NGC 1333 as revealed by a number of different emission lines, aiming to set a reference for the applicability of tracers in constraining diverse physical processes. We reconstruct line maps for H$_2$ , CO, H$_2$O and C$^+$ using data obtained with the Spitzer-IRS and Herschel HIFI-SPIRE. We compare the morphological features of the maps and derive the gas excitation for regions of interest employing LTE and non-LTE methods. We also calculate the kinematical and dynamical properties for each outflow tracer consistently for all outflows in NGC 1333. We finally measure the water abundance in outflows with respect to carbon monoxide and molecular hydrogen. CO and H$_2$ are highly excited around B-stars and at lower levels trace protostellar outflows. H$_2$O emission is dominated by a moderately fast component associated with outflows. Intermediate J CO lines appear brightest at the locations traced by a narrow H$_2$O component, indicating that beyond the dominating collisional processes, a secondary, radiative excitation component can also be active. The morphology, kinematics, excitation and abundance variations of water are consistent with its excitation and partial dissociation in shocks. Water abundance ranges between 5 x 10$^{-7}$ and 10$^{-5}$, with the lower values being more representative. Water is brightest and most abundant around IRAS 4A which is consistent with the latter hosting a hot corino source. Finally, the outflow mass flux is found highest for CO and decreases by one and two orders of magnitude for H$_2$ and H$_2$O, respectively.
Expanding nebulae are produced by mass loss from stars, especially during late stages of evolution. Multi-dimensional simulation of these nebulae requires high resolution near the star and permits resolution that decreases with distance from the star , ideally with adaptive timesteps. We report the implementation and testing of static mesh-refinement in the radiation-magnetohydrodynamics code PION, and document its performance for 2D and 3D calculations. The bow shock produced by a hot, magnetized, slowly rotating star as it moves through the magnetized ISM is simulated in 3D, highlighting differences compared with 2D calculations. Latitude-dependent, time-varying magnetized winds are modelled and compared with simulations of ring nebulae around blue supergiants from the literature. A 3D simulation of the expansion of a fast wind from a Wolf-Rayet star into the slow wind from a previous red supergiant phase of evolution is presented, with results compared with results in the literature and analytic theory. Finally the wind-wind collision from a binary star system is modelled with 3D MHD, and the results compared with previous 2D hydrodynamic calculations. A python library is provided for reading and plotting simulation snapshots, and the generation of synthetic infrared emission maps using torus is also demonstrated. It is shown that state-of-the-art 3D MHD simulations of wind-driven nebulae can be performed using PION with reasonable computational resources. The source code and user documentation is made available for the community under a BSD3 licence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا