ترغب بنشر مسار تعليمي؟ اضغط هنا

45 - T. Weich , S. Barkhofen , U. Kuhl 2013
In ballistic open quantum systems one often observes that the resonances in the complex-energy plane form a clear chain structure. Taking the open 3-disk system as a paradigmatic model system, we investigate how this chain structure is reflected in t he resonance states and how it is connected to the underlying classical dynamics. Using an efficient scattering approach we observe that resonance states along one chain are clearly correlated while resonance states of different chains show an anticorrelation. Studying the phase space representations of the resonance states we find that their localization in phase space oscillate between different regions of the classical trapped set as one moves along the chains and that these oscillations are connected to a modulation of the resonance spacing. A single resonance chain is thus no WKB quantization of a single periodic orbits, but the structure of several oscillating chains arises from the interaction of several periodic orbits. We illuminate the physical mechanism behind these findings by combining the semiclassical cycle expansion with a quantum graph model.
Symmetry reduced three-disk and five-disk systems are studied in a microwave setup. Using harmonic inversion the distribution of the imaginary parts of the resonances is determined. With increasing opening of the systems, a spectral gap is observed f or thick as well as for thin repellers and for the latter case it is compared with the known topological pressure bounds. The maxima of the distributions are found to coincide for a large range of the distance to radius parameter with half of the classical escape rate. This confirms theoretical predictions based on rigorous mathematical analysis for the spectral gap and on numerical experiments for the maxima of the distributions.
We present microwave experiments on the symmetry reduced 5-disk billiard studying the transition from a closed to an open system. The measured microwave reflection signal is analyzed by means of the harmonic inversion and the counting function of the resulting resonances is studied. For the closed system this counting function shows the Weyl asymptotic with a leading exponent equal to 2. By opening the system successively this exponent decreases smoothly to an non-integer value. For the open systems the extraction of resonances by the harmonic inversion becomes more challenging and the arising difficulties are discussed. The results can be interpreted as a first experimental indication for the fractal Weyl conjecture for resonances.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا