ترغب بنشر مسار تعليمي؟ اضغط هنا

The investigation of the d, 3H and 3He spin structure has been performed at the RIKEN(Japan) accelerator research facility and VBLHEP(JINR) using both polarized and unpolarized deuteron beams. The experimental results on the analyzing powers studies in dp- elastic scattering, d(d,3H)p and d(d,3He)n reactions are presented. The vector and tensor analyzing powers for dp-elastic scattering at 880 and 2000 MeV are obtained at the Nuclotron(VBLHEP). The result on the analyzing powers Ay, Ayy of the deuteron at 2000 MeV are compared with relativistic multiple scattering model calculations. The data on the tensor analyzing powers for the d(d,3H)p and d(d,3He)n reactions obtained at Ed = 200 and 270 MeV demonstrate the sensitivity to the 3H, 3He and deuteron spin structure. The essential disagreements between the experimental results and the theoretical calculations within the one-nucleon exchange model framework are observed. The wide experimental program on the study of the polarization effects in dp- elastic scattering, dp-nonmesonic breakup, d(d,3He)n, d(d,3H)p and d(3He,4He)p reactions using internal and extracted beam at Nuclotron is discussed.
The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperat ure. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatibl e with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا