ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the location of an ultra-hard X-ray selected sample of AGN from the Swift Burst Alert Telescope (BAT) catalog with respect to the main sequence (MS) of star-forming galaxies using Herschel-based measurements of the star formation rate (SFR) and stellar mass (mstar) from Sloan Digital Sky Survey (SDSS) photometry where the AGN contribution has been carefully removed. We construct the MS with galaxies from the Herschel Reference Survey and Herschel Stripe 82 Survey using the exact same methods to measure the SFR and mstar{} as the Swift/BAT AGN. We find a large fraction of the Swift/BAT AGN lie below the MS indicating decreased specific SFR (sSFR) compared to non-AGN galaxies. The Swift/BAT AGN are then compared to a high-mass galaxy sample (COLD GASS), where we find a similarity between the AGN in COLD GASS and the Swift/BAT AGN. Both samples of AGN lie firmly between star-forming galaxies on the MS and quiescent galaxies far below the MS. However, we find no relationship between the X-ray luminosity and distance from the MS. While the morphological distribution of the BAT AGN is more similar to star-forming galaxies, the sSFR of each morphology is more similar to the COLD GASS AGN. The merger fraction in the BAT AGN is much higher than the COLD GASS AGN and star-forming galaxies and is related to distance from the MS. These results support a model in which bright AGN tend to be in high mass star-forming galaxies in the process of quenching which eventually starves the supermassive black hole itself.
We present early results of the Herschel PACS (70 and 160 micron{}) and SPIRE (250, 350, and 500 micron{}) survey of 313 low redshift ($rm{z} < 0.05$), ultra-hard X-ray (14--195 keV) selected AGN from the 58 month Swift/BAT catalog. Selection of AGN from ultra-hard X-rays avoids bias from obscuration providing a complete sample of AGN to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that $>$35%$ and $>$20%$ of the sources are point-like at 70 and 160 micron{} respectively and many more that have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFR) of 0.1 - 100 M$_{sun}$ yr$^{-1}$ using the 70 and 160 micron{} flux densities as SFR indicators are consistent with those inferred from Spitzer NeII fluxes, but we find that 11.25 micron{} PAH data give $sim$3x lower SFR. Using GALFIT to measure the size of the FIR emitting regions, we determined the SFR surface density [M$_{sun}$ yr$^{-1}$ kpc$^{-2}$] for our sample, finding a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M$_{sun}$ yr$^{-1}$ kpc$^{-2}$).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا