ﻻ يوجد ملخص باللغة العربية
We present early results of the Herschel PACS (70 and 160 micron{}) and SPIRE (250, 350, and 500 micron{}) survey of 313 low redshift ($rm{z} < 0.05$), ultra-hard X-ray (14--195 keV) selected AGN from the 58 month Swift/BAT catalog. Selection of AGN from ultra-hard X-rays avoids bias from obscuration providing a complete sample of AGN to study the connection between nuclear activity and star formation in host galaxies. With the high angular resolution of PACS, we find that $>$35%$ and $>$20%$ of the sources are point-like at 70 and 160 micron{} respectively and many more that have their flux dominated by a point source located at the nucleus. The inferred star formation rates (SFR) of 0.1 - 100 M$_{sun}$ yr$^{-1}$ using the 70 and 160 micron{} flux densities as SFR indicators are consistent with those inferred from Spitzer NeII fluxes, but we find that 11.25 micron{} PAH data give $sim$3x lower SFR. Using GALFIT to measure the size of the FIR emitting regions, we determined the SFR surface density [M$_{sun}$ yr$^{-1}$ kpc$^{-2}$] for our sample, finding a significant fraction of these sources exceed the threshold for star formation driven winds (0.1 M$_{sun}$ yr$^{-1}$ kpc$^{-2}$).
We present an analysis of the relation between star formation rate (SFR) surface density (sigmasfr) and mass surface density of molecular gas (sigmahtwo), commonly referred to as the Kennicutt-Schmidt (K-S) relation, at its intrinsic spatial scale, i
We use Herschel data to analyze the size of the far-infrared 70micron emission for z<0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared
Using the large emission line galaxy sample from the Sloan Digital Sky Survey we show that Star forming galaxies, Seyferts, and low-ionization nuclear emission-line regions (LINERs) form clearly separated branches on the standard optical diagnostic d
We separate the extragalactic radio source population above ~50 uJy into active galactic nuclei (AGN) and star-forming sources. The primary method of our approach is to fit the infrared spectral energy distributions (SEDs), constructed using Spitzer/
The fraction of compact active galactic nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z > 2. This can be