ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the superconducting transition temperature $T_c$ vs. thickness $d_F$ of Ferromagnet/Superconductor (F/S) bilayers, where F is a strong $3d$ ferromagnet (Ni, Ni$_{0.81}$Fe$_{0.19}$ (Permalloy), Co$_{0.5}$Fe$_{0.5}$) and S = Nb, taken from su perfluid density measurements rather than resistivity. By regrouping the many physical parameters that appear in theory, we show that the effective exchange energy is determined from the F film thickness $d_F$ where $T_c$ vs. $d_F$ begins to flatten out. Using this rearranged theory we conclude: 1) the effective exchange energy, $E_{ex}$, is about 15 times smaller than measured by ARPES and 5 times smaller than deduced in previous studies similar to ours; 2) the dirty-limit coherence length, $xi_{F}$, for Cooper pairs in F is larger than the electron mean free path, $ell_F$; and 3) the $3d$-F/Nb interface is enough of a barrier that Cooper pairs typically must hit it several times before getting through. The Py/Nb and CoFe/Nb interfaces are more transparent than the Ni/Nb interface.
68 - X. W. Zhao , T. R. Lemberger , 2007
Using pulsed laser ablation with arsenic over pressure, the growth conditions for GaAs nanowires have been systematically investigated and optimized. Arsenic over pressure with As$_2$ molecules was introduced to the system by thermal decomposition of polycrystalline GaAs to control the stoichiometry and shape of the nanowires during growth. GaAs nanowires exhibit a variety of geometries under varying arsenic over pressure, which can be understood by different growth processes via vapor-liquid-solid mechanism. Single-crystal GaAs nanowires with uniform diameter, lengths over 20 $mu$m, and thin surface oxide layer were obtained and can potentially be used for further electronic characterization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا