ترغب بنشر مسار تعليمي؟ اضغط هنا

91 - P. Zhang , P. Richard , T. Qian 2013
We report the observation by angle-resolved photoemission spectroscopy of an impurity state located inside the superconducting gap of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ and vanishing above the superconducting critical temperature, for which the spectral weight is confined in momentum space near the Fermi wave vector positions. We demonstrate, supported by theoretical simulations, that this in-gap state originates from weak non-magnetic scattering between bands with opposite sign of the superconducting gap phase. This weak scattering, likely due to off-plane Ba/K disorders, occurs mostly among neighboring Fermi surfaces, suggesting that the superconducting gap phase changes sign within holelike (and electronlike) bands. Our results impose severe restrictions on the models promoted to explain high-temperature superconductivity in these materials.
245 - T. Qian , H. Miao , Z. J. Wang 2013
Comprehensive studies of the electronic states of Ir 5d and Te 5p have been performed to elucidate the origin of the structural phase transition in IrTe2 by combining angle-resolved photoemission spectroscopy and resonant inelastic X-ray scattering. While no considerable changes are observed in the configuration of the Ir 5d electronic states across the transition, indicating that the Ir 5d orbitals are not involved in the transition, we reveal a van Hove singularity at the Fermi level (EF) related to the Te px+py orbitals, which is removed from EF at low temperatures. The wavevector connecting the adjacent saddle points is consistent with the in-plane projection of the superstructure modulation wavevector. These results can be qualitatively understood with the Rice-Scott saddle-point mechanism, while effects of the lattice distortions need to be additionally involved.
395 - N. Xu , T. Qian , P. Richard 2012
We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ for a wide range of Ru concentrations (0.15 $leq$ emph{x} $leq$ 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.
92 - P. Zhang , P. Richard , T. Qian 2011
In order to improve the advantages and the reliability of the second derivative method in tracking the position of extrema from experimental curves, we develop a novel analysis method based on the mathematical concept of curvature. We derive the form ulas for the curvature in one and two dimensions and demonstrate their applicability to simulated and experimental angle-resolved photoemission spectroscopy data. As compared to the second derivative, our new method improves the localization of the extrema and reduces the peak broadness for a better visualization on intensity image plots.
64 - T. Qian , N. Xu , Y.-B. Shi 2010
We have performed an angle-resolved photoemission spectroscopy study of a new iron-based superconductor Sr4V2O6Fe2As2. While V 3d orbitals are found to be in a Mott insulator state and show an incoherent peak at ~ 1 eV below the Fermi level, the disp ersive Fe 3d bands form several hole- and electron-like Fermi surfaces (FSs), some of which are quasi-nested by the (pi, 0) wave vector. This differs from the local density approximation (LDA) calculations, which predict non-nested FSs for this material. However, LDA+U with a large effective Hubbard energy U on V 3d electrons can reproduce the experimental observation reasonably well. The observed fermiology in superconducting Sr4V2O6Fe2As2 strongly supports that (pi, 0) interband scattering between quasi-nested FSs is indispensable to superconductivity in pnictides.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا