ترغب بنشر مسار تعليمي؟ اضغط هنا

A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we dete rmine asymptotic expressions for the pressure on the X-axis in models of adsorbing directed paths in the first quadrant. Our models show that the pressure vanishes in the limit of long paths in the desorbed phase, but there is a non-zero pressure in the adsorbed phase. We determine asymptotic approximations of the pressure for finite length Dyck paths and directed paths, as well as for a model of adsorbing staircase polygons with both ends grafted to the X-axis.
The exact solution of directed self-avoiding walks confined to a slit of finite width and interacting with the walls of the slit via an attractive potential has been calculated recently. The walks can be considered to model the polymer-induced steric stabilisation and sensitised floculation of colloidal dispersions. The large width asymptotics led to a phase diagram different to that of a polymer attached to, and attracted to, a single wall. The question that arises is: can one interpolate between the single wall and two wall cases? In this paper we calculate the exact scaling functions for the partition function by considering the two variable asymptotics of the partition function for simultaneous large length and large width. Consequently, we find the scaling functions for the force induced by the polymer on the walls. We find that these scaling functions are given by elliptic theta-functions. In some parts of the phase diagram there is more a complex crossover between the single wall and two wall cases and we elucidate how this happens.
Directed paths have been used extensively in the scientific literature as a model of a linear polymer. Such paths models in particular the conformational entropy of a linear polymer and the effects it has on the free energy. These directed models are simplifi
We present results for a lattice model of bio-polymers where the type of $beta$-sheet formation can be controlled by different types of hydrogen bonds depending on the relative orientation of close segments of the polymer. Tuning these different inte raction strengths leads to low-temperature structures with different types of orientational order. We perform simulations of this model and so present the phase diagram, ascertaining the nature of the phases and the order of the transitions between these phases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا