ترغب بنشر مسار تعليمي؟ اضغط هنا

278 - S. Leurini 2011
Infrared dark clouds are massive, dense clouds seen in extinction against the IR Galactic background. Many of these objects appear to be on the verge of star and star cluster formation. Our aim is to understand the physical properties of IRDCs in ver y early evolutionary phases. We selected the filamentary IRDC G351.77 - 0.51, which is remarkably IR quiet at 8{mu}m. As a first step, we observed mm dust continuum emission and rotational lines of moderate and dense gas tracers to characterise different condensations along the IRDC and study the velocity field of the filament. Our initial study confirms coherent velocity distribution along the infrared dark cloud ruling out any coincidental projection effects. Excellent correlation between MIR extinction, mm continuum emission and gas distribution is found. Large-scale turbulence and line profiles throughout the filament is indicative of a shock in this cloud. Excellent correlation between line width, and MIR brightness indicates turbulence driven by local star formation.
We present a new high-resolution study of pre-protocluster regions in tracers exclusively probing the coldest and dense gas (NH_2D). The data are used to constrain the chemical, thermal, kinematic, and physical conditions (i.e., densities) in G29.96e and G35.20w. NH_3, NH_2D, and continuum emission were mapped using the VLA, and PdBI. In particular, NH_2D is a unique tracer of cold, precluster gas at high densities, while NH_3 traces both the cold and warm gas of modest-to-high densities. In G29.96e, Spitzer images reveal two massive filaments, one of them in extinction (infrared dark cloud). We observe very low line widths in NH_3 (FWHM <1km/s). These multi-wavelength, high-resolution observations of high-mass pre-protocluster regions show that the target regions are characterized by (i) turbulent Jeans fragmentation of massive clumps into cores (from a Jeans analysis); (ii) cores and clumps that are over-bound/subvirial, i.e. turbulence is too weak to support them against collapse, meaning that (iii) some models of monolithic cloud collapse are quantitatively inconsistent with data; (iv) accretion from the core onto a massive star, which can (for observed core sizes and velocities) be sustained by accretion of envelope material onto the core, suggesting that (similar to competitive accretion scenarios) the mass reservoir for star formation is not necessarily limited to the natal core; (v) high deuteration ratios ([NH_2D/NH_3]>6%), which make the above discoveries possible; (vi) and the destruction of NH_2D toward embedded stars. [abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا