ترغب بنشر مسار تعليمي؟ اضغط هنا

The molecular distribution of the IRDC G351.77-0.51

278   0   0.0 ( 0 )
 نشر من قبل Silvia Leurini
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Leurini




اسأل ChatGPT حول البحث

Infrared dark clouds are massive, dense clouds seen in extinction against the IR Galactic background. Many of these objects appear to be on the verge of star and star cluster formation. Our aim is to understand the physical properties of IRDCs in very early evolutionary phases. We selected the filamentary IRDC G351.77 - 0.51, which is remarkably IR quiet at 8{mu}m. As a first step, we observed mm dust continuum emission and rotational lines of moderate and dense gas tracers to characterise different condensations along the IRDC and study the velocity field of the filament. Our initial study confirms coherent velocity distribution along the infrared dark cloud ruling out any coincidental projection effects. Excellent correlation between MIR extinction, mm continuum emission and gas distribution is found. Large-scale turbulence and line profiles throughout the filament is indicative of a shock in this cloud. Excellent correlation between line width, and MIR brightness indicates turbulence driven by local star formation.

قيم البحث

اقرأ أيضاً

An estimate of the degree of CO-depletion ($f_D$) provides information on the physical conditions occurring in the innermost and densest regions of molecular clouds. A key parameter in these studies is the size of the depletion radius, i.e. the radiu s within which the C-bearing species, and in particular CO, are largely frozen onto dust grains. A strong depletion state (i.e. $f_D>10$, as assumed in our models) is highly favoured in the innermost regions of dark clouds, where the temperature is $<20$ K and the number density of molecular hydrogen exceeds a few $times$10$^{4}$ cm$^{-3}$. In this work, we estimate the size of the depleted region by studying the Infrared Dark Cloud (IRDC) G351.77-0.51. Continuum observations performed with the $Herschel$ $Space$ $Observatory$ and the $LArge$ $APEX$ $BOlometer$ $CAmera$, together with APEX C$^{18}$O and C$^{17}$O J=2$rightarrow$1 line observations, allowed us to recover the large-scale beam- and line-of-sight-averaged depletion map of the cloud. We built a simple model to investigate the depletion in the inner regions of the clumps in the filament and the filament itself. The model suggests that the depletion radius ranges from 0.02 to 0.15 pc, comparable with the typical filament width (i.e.$sim$0.1 pc). At these radii, the number density of H$_2$ reaches values between 0.2 and 5.5$times$10$^{5}$ cm$^{-3}$. These results provide information on the approximate spatial scales on which different chemical processes operate in high-mass star-forming regions and also suggest caution when using CO for kinematical studies in IRDCs.
The fragmentation of a molecular cloud that leads to the formation of high-mass stars occurs on a hierarchy of different spatial scales. The large molecular clouds harbour massive molecular clumps with massive cores embedded in them. The fragmentatio n of these cores may determine the initial mass function and the masses of the final stars. Therefore, studying the fragmentation processes in the cores is crucial to understand how massive stars form. The hot molecular core G34-MM1, embedded in IRDC G34.34+00.24 located at a distance of 3.6 kpc, is a promising object to study both the fragmentation and outflow processes. Using data at 93 and 334 GHz obtained from the Atacama Large Millimeter Array (ALMA) database we studied G34-MM1 with great detail. The angular resolution of the data at 334 GHz allowed us to resolve structures of about 0.014 pc ($sim$2900 au). We found evidence of fragmentation towards the molecular hot core G34-MM1 at two different spatial scales. The dust condensation MM1-A (about 0.06 pc in size) harbours three molecular subcores candidates (SC1 through SC3) detected in $^{12}$CO J=3-2 emission, with typical sizes of about 0.02 pc. From the HCO$^+$ J=1-0 emission, we identify, with better angular resolution than previous observations, two perpendicular molecular outflows arising from MM1-A. We suggest that subcores SC1 and SC2, embedded in MM1-A, harbour the sources responsible of the main and the secondary molecular outflow, respectively. Finally, from the radio continuum emission at 334 GHz, we marginally detected another dust condensation, named MM1-E, from which a young, massive, and energetic molecular outflow arises. The fragmentation of the hot molecular core G34-MM1 at two different spatial scales, together with the presence of multiple molecular outflows associated with it, would support a competitive accretion scenario.
Molecular line images of 13CO, C18O, CN, CS, CH3OH, and HNCO are obtained toward the spiral arm of M51 at a 7 times 6 resolution with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Distributions of the molecules averaged over a 300 pc scale are found to be almost similar to one another and to essentially trace the spiral arm. However, the principal component analysis shows a slight difference of distributions among molecular species particularly for CH3OH and HNCO. These two species do not correlate well with star-formation rate, implying that they are not enhanced by local star-formation activities but by galactic-scale phenomena such as spiral shocks. Furthermore, the distribution of HNCO and CH3OH are found to be slightly different, whose origin deserves further investigation. The present results provide us with an important clue to understanding the 300 pc scale chemical composition in the spiral arm and its relation to galactic-scale dynamics.
We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. (2019) to study the gas distribution and kinematics within the CMZ. We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star formation. We then post-process the simulated CMZ to calculate its spatially-dependent chemical and thermal state, producing synthetic emission data cubes and maps of both HI and the molecular gas tracers CO, NH3 and HCN. We show that, as viewed from Earth, gas in the CMZ is distributed mainly in two parallel and elongated features extending from positive longitudes and velocities to negative longitudes and velocities. The molecular gas emission within these two streams is not uniform, and it is mostly associated to the region where gas flowing towards the Galactic Center through the dust lanes collides with gas orbiting within the ring. Our simulated data cubes reproduce a number of features found in the observed CMZ. However, some discrepancies emerge when we use our results to interpret the position of individual molecular clouds. Finally, we show that, when the CMZ is near a period of intense star formation, the ring is mostly fragmented as a consequence of supernova feedback, and the bulk of the emission comes from star-forming molecular clouds. This correlation between morphology and star formation rate should be detectable in observations of extragalactic CMZs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا