ترغب بنشر مسار تعليمي؟ اضغط هنا

The spin polarization of electrons trapped in InAs self-assembled quantum dot ensembles is investigated. A statistical approach for the population of the spin levels allows one to infer the spin polarization from the measure values of the addition en ergies. From the magneto-capacitance spectroscopy data, the authors found a fully polarized ensemble of electronic spins above 10 T when $mathbf{B}parallel[001]$ and at 2.8 K. Finally, by including the g-tensor anisotropy the angular dependence of spin polarization with the magnetic field $mathbf{B}$ orientation and strength could be determined.
The nitrogen-vacancy (N-V) center in diamond is promising as an electron spin qubit due to its long-lived coherence and optical addressability. The ground state is a spin triplet with two levels ($m_s = pm 1$) degenerate at zero magnetic field. Polar ization-selective microwave excitation is an attractive method to address the spin transitions independently, since this allows operation down to zero magnetic field. Using a resonator designed to produce circularly polarized microwaves, we have investigated the polarization selection rules of the N-V center. We first apply this technique to N-V ensembles in [100] and [111]-oriented samples. Next, we demonstrate an imaging technique, based on optical polarization dependence, that allows rapid identification of the orientations of many single N-V centers. Finally, we test the microwave polarization selection rules of individual N-V centers of known orientation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا