ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - K. Werner , T. Nagel , T. Rauch 2008
We report on our attempt for the first non-LTE modeling of gaseous metal disks around single DAZ white dwarfs recently discovered by Gaensicke et al. and thought to originate from a disrupted asteroid. We assume a Keplerian rotating viscous disk ring composed of calcium and hydrogen and compute the detailed vertical structure and emergent spectrum. We find that the observed infrared CaII emission triplet can be modeled with a hydrogen-deficient gas ring located at R=1.2 R_sun, inside of the tidal disruption radius, with Teff about 6000 K and a low surface mass density of about 0.3 g/cm**2. A disk having this density and reaching from the central white dwarf out to R=1.2 R_sun would have a total mass of 7 10**21 g, corresponding to an asteroid with about 160 km diameter.
350 - S. Schuh , I. Traulsen , T. Nagel 2007
Methods to measure masses of PG1159 stars in order to test evolutionary scenarios are currently based on spectroscopic masses or asteroseismological mass determinations. One recently discovered PG1159 star in a close binary system may finally allow t he first dynamical mass determination, which has so far been analysed on the basis of one SDSS spectrum and photometric monitoring. In order to be able to phase future radial velocity measurements of the system SDSSJ212531.92-010745.9, we follow up on the photometric monitoring of this system to provide a solid observational basis for an improved orbital ephemeris determination. New white-light time series of the brightness variation of SDSSJ212531.92-010745.9 with the Tuebingen 80cm and Goettingen 50cm telescopes extend the monitoring into a second season (2006), tripling the length of overall observational data available, and significantly increasing the time base covered. We give the ephemeris for the orbital motion of the system, based on a sine fit which now results in a period of 6.95573(5)h, and discuss the associated new amplitude determination in the context of the phased light curve variation profile. The accuracy of the ephemeris has been improved by more than one order of magnitude compared to that previously published for 2005 alone.
69 - M. Kromer 2007
Dwarf nova outbursts result from enhanced mass transport through the accretion disc of a cataclysmic variable system. We assess the question of whether these outbursts are caused by an enhanced mass transfer from the late-type main sequence star on to the white dwarf (so-called mass transfer instability model, MTI) or by a thermal instability in the accretion disc (disc instability model, DIM). We compute non-LTE models and spectra of accretion discs in quiescence and outburst and construct spectral time sequences for discs over a complete outburst cycle. We then compare our spectra to published optical spectroscopy of the dwarf nova SS Cygni. In particular, we investigate the hydrogen and helium line profiles that are turning from emission into absorption during the rise to outburst. The evolution of the hydrogen and helium line profiles during the rise to outburst and decline clearly favour the disc-instability model. Our spectral model sequences allow us to distinguish inside-out and outside-in moving heating waves in the disc of SS Cygni, which can be related to symmetric and asymmetric outburst light curves, respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا