ترغب بنشر مسار تعليمي؟ اضغط هنا

66 - W. Plessas , T. Melde 2008
Latest results from a study of baryon ground and resonant states within relativistic constituent quark models are reported. After recalling some typical spectral properties, the description of ground states, especially with regard to the nucleon and hyperon electromagnetic structures, is addressed. In the following, recent covariant predictions for pion, eta, and kaon partial decay widths of light and strange baryon resonances below 2 GeV are summarized. These results exhibit a characteristic pattern that is distinct from nonrelativistic or relativized decay studies performed so far. Together with a detailed analysis of the spin, flavor, and spatial structures of the wave functions, it supports a new and extended classification scheme of baryon ground and resonant states into SU(3) flavor multiplets.
96 - T. Melde , L. Canton , W. Plessas 2008
We present a microscopic derivation of the form factors of strong-interaction piNN and piNDelta vertices within a relativistic constituent quark model. The results are compared with form factors from phenomenological meson-baryon models and recent la ttice QCD calculations. We give an analytical representation of the vertex form factors suitable for applications in further studies of hadron reactions.
64 - T. Melde , W. Plessas , 2008
We present a new classification scheme of baryon ground states and resonances into SU(3) flavor multiplets. The scheme is worked out along a covariant formalism with relativistic constituent quark models and it relies on detailed investigations of th e baryon spectra, the spin-flavor structure of the baryon eigenstates, the behaviour of their probability density distributions as well as covariant predictions for mesonic decay widths. The results are found to be quite independent of the specific types of relativistic constituent quark models employed. It turns out that a consistent classification requires to include also resonances that are presently reported from experiment with only two-star status.
125 - T. Melde , W. Plessas 2007
Constituent quark models provide a reasonable description of the baryon mass spectra. However, even in the light- and strange-flavor sectors several intriguing shortcomings remain. Especially with regard to strong decays of baryon resonances no consi stent picture has so far emerged, and the existing experimental data cannot be explained in a satisfactory manner. Recently first covariant calculations with modern constituent quark models have become available for all pi, eta, and K decay modes of the low-lying light and strange baryons. They generally produced a remarkable underestimation of the experimental data for partial decay widths. We summarize the main results and discuss their impact on the classification of baryon resonances into flavor multiplets. These findings are of particular relevance for future efforts in the experimental investigation of baryon resonances.
115 - B. Sengl , T. Melde , W. Plessas 2007
We present results for kaon decay widths of baryon resonances from a relativistic study with constituent quark models. The calculations are done in the point-form of Poincare-invariant quantum mechanics with a spectator-model decay operator. We obtai n covariant predictions of the Goldstone-boson-exchange and a variant of the one-gluon-exchange constituent quark models for all kaon decay widths of established baryon resonances. They are generally characterized by underestimating the available experimental data. In particular, the widths of kaon decays with increasing strangeness in the baryon turn out to be extremely small. We also consider the nonrelativistic limit, leading to the familiar elementary emission model, and demonstrate the importance of relativistic effects. It is found that the nonrelativistic approach evidently misses sensible influences from Lorentz boosts and some essential spin-coupling terms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا