ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - T. Matsumoto , M. G. Kim , J. Pyo 2015
We reanalyze data of near-infrared background taken by Infrared Telescope in Space (IRTS) based on up-to-date observational results of zodiacal light, integrated star light and diffuse Galactic light. We confirm the existence of residual isotropic em ission, which is slightly lower but almost the same as previously reported. At wavelengths longer than 2 {mu}m, the result is fairly consistent with the recent observation with AKARI. We also perform the same analysis using a different zodiacal light model by Wright and detected residual isotropic emission that is slightly lower than that based on the original Kelsall model. Both models show the residual isotropic emission that is significantly brighter than the integrated light of galaxies.
The eikonal reaction theory (ERT) proposed lately is a method of calculating one-neutron removal reactions at intermediate incident energies in which Coulomb breakup is treated accurately with the continuum discretized coupled-channels method. ERT is extended to two-neutron removal reactions. ERT reproduces measured one- and two-neutron removal cross sections for 6He scattering on 12C and 208Pb targets at 240 MeV/nucleon and also on a 28Si target at 52 MeV/nucleon. For the heavier target in which Coulomb breakup is important, ERT yields much better agreement with the measured cross sections than the Glauber model.
Superconducting and antiferroquadrupolar (AFQ) transitions in a Pr-based compound PrRh2Zn20 have been found to occur simultaneously at Tc=TQ=0.06 K. The superconducting transition manifests itself by zero resistance and large diamagnetic susceptibili ty. The specific heat exhibits a Schottky anomaly peaking at 14 K and magnetization curves measured at 2 K show anisotropic behaviors. The analysis of these data indicates that the crystalline electric field (CEF) ground state of the trivalent Pr ion is the non-Kramers Gamma3 doublet with the quadrupolar degrees of freedom. A sharp peak in the specific heat at 0.06 K has been attributed not to the superconducting transition but to the AFQ transition because the ordering temperature TQ decreases in B || [100] but increases in B || [110] and B || [111] with increasing B up to 6 T. This anisotropic behavior of TQ(B) can be well explained by a two-sublattice mean-field calculation, which corroborates the AFQ ordered state below TQ. The entropy release at TQ is only 10% of Rln2 expected for the Gamma3 doublet, suggesting possible interplay between the quadrupolar degrees of freedom and the superconductivity.
We investigate $^6$Li($n$, $n$)$^6$Li$^*$ $to$ $d$ + $alpha$ reactions by using the continuum-discretized coupled-channels method with the complex Jeukenne-Lejeune-Mahaux effective nucleon-nucleon interaction. In this study, the $^6$Li nucleus is des cribed as a $d$ + $alpha$ cluster model. The calculated elastic cross sections for incident energies between 7.47 and 24.0 MeV are good agreement with experimental data. Furthermore, we show the neutron spectra to $^6$Li breakup states measured at selected angular points and incident energies can be also reproduced systematically.
175 - K. Ogata 2009
The dependence of breakup cross sections of 8B at 65 MeV/nucleon on the target mass number A_T is investigated by means of the continuum-discretized coupled-channels method (CDCC) with more reliable distorting potentials than those in the preceding s tudy. The A_T^(1/3) scaling law of the nuclear breakup cross section is found to be satisfied only in the middle A_T region of 40 < A_T < 150. The interference between nuclear and Coulomb breakup amplitudes vanishes in very forward angle scattering, independently of the target nucleus. The truncation of the relative energy between the p and 7Be fragments slightly reduces the contribution of nuclear breakup at very forward angles, while the angular region in which the first-order perturbation theory works well does not change essentially.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا