ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of nuclear and Coulomb breakup of 8B

230   0   0.0 ( 0 )
 نشر من قبل Kazuyuki Ogata
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف K. Ogata




اسأل ChatGPT حول البحث

The dependence of breakup cross sections of 8B at 65 MeV/nucleon on the target mass number A_T is investigated by means of the continuum-discretized coupled-channels method (CDCC) with more reliable distorting potentials than those in the preceding study. The A_T^(1/3) scaling law of the nuclear breakup cross section is found to be satisfied only in the middle A_T region of 40 < A_T < 150. The interference between nuclear and Coulomb breakup amplitudes vanishes in very forward angle scattering, independently of the target nucleus. The truncation of the relative energy between the p and 7Be fragments slightly reduces the contribution of nuclear breakup at very forward angles, while the angular region in which the first-order perturbation theory works well does not change essentially.



قيم البحث

اقرأ أيضاً

We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_ {mathrm{scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{mathrm{% scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.
We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave function s. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention on different definitions of the reaction cross section which exist in the literature, and which may induce small, but significant, differences in the numerical values.
The astrophysical factor of the 8B(p,gamma)9C at zero energy, S18(0), is determined from three-body model analysis of 9C breakup processes. The elastic breakup 208Pb(9C,p8B)208Pb at 65 MeV/nucleon and the one-proton removal reaction of 9C at 285 MeV/ nucleon on C and Al targets are calculated with the continuum-discretized coupled-channels method (CDCC) and the eikonal reaction theory (ERT), respectively. The asymptotic normalization coefficient (ANC) of 9C in the p-8B configuration extracted from the two reactions show good consistency, in contrast to in the previous studies. As a result of the present analysis, S18(0) = 66 pm 10 eVb is obtained.
We discuss the use of one-nucleon breakup reactions of loosely bound nuclei at intermediate energies as an indirect method in nuclear astrophysics. These are peripheral processes, therefore we can extract asymptotic normalization coefficients (ANC) f rom which reaction rates of astrophysical interest can be inferred. To show the usefulness of the method, three different cases are discussed. In the first, existing experimental data for the breakup of 8B at energies from 30 to 1000 MeV/u and of 9C at 285 MeV/u on light through heavy targets are analyzed. Glauber model calculations in the eikonal approximation and in the optical limit using different effective interactions give consistent, though slightly different results, showing the limits of the precision of the method. The results lead to the astrophysical factor S_17(0)=18.7+/-1.9 eVb for the key reaction for solar neutrino production 7Be(p,gamma)8B. It is consistent with the values from other indirect methods and most direct measurements, but one. Breakup reactions can be measured with radioactive beams as weak as a few particles per second, and therefore can be used for cases where no direct measurements or other indirect methods for nuclear astrophysics can be applied. We discuss a proposed use of the breakup of the proton drip line nucleus 23Al to obtain spectroscopic information and the stellar reaction rate for 22Mg(p,gamma)23Al.
260 - Tokuro Fukui , Kazuyuki Ogata , 2014
The astrophysical factor of $^8$B($p$,$gamma$)$^9$C at zero energy, $S_{18}(0)$, is determined by a three-body coupled-channels analysis of the transfer reaction $^{8}$B($d$,$n$)$^{9}$C at 14.4 MeV/nucleon. Effects of the breakup channels of $d$ and $^9$C are investigated with the continuum-discretized coupled-channels method. It is found that, in the initial and final channels, respectively, the transfer process through the breakup states of $d$ and $^9$C, its interference with that through their ground states in particular, gives a large increase in the transfer cross section. The finite-range effects with respect to the proton-neutron relative coordinate are found to be about 20%. As a result of the present analysis, $S_{18}(0)=22 pm 6~{rm eV~b}$ is obtained, which is smaller than the result of the previous distorted-wave Born approximation analysis by about 51%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا