ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a spectroscopic analysis of HST/COS observations of three massive stars in the low metallicity dwarf galaxies IC 1613 and WLM. These stars, were previously observed with VLT/X-shooter by Tramper et al. (2011, 2014) who claimed that their m ass-loss rates are higher than expected from theoretical predictions for the underlying metallicity. A comparison of the FUV spectra with those of stars of similar spectral types/luminosity classes in the Galaxy, and the Magellanic Clouds provides a direct, model-independent check of the mass-loss - metallicity relation. Then, a quantitative spectroscopic analysis is carried out using the NLTE stellar atmosphere code CMFGEN. We derive the photospheric and wind characteristics, benefiting from a much better sensitivity of the FUV lines to wind properties than Ha. Iron and CNO abundances are measured, providing an independent check of the stellar metallicity. The spectroscopic analysis indicates that Z/Zsun = 1/5, similar to a SMC-type environment, and higher than usually quoted for IC 1613 and WLM. The mass-loss rates are smaller than the empirical ones by Tramper et al. (2014), and those predicted by the widely used theoretical recipe by Vink et al. (2001). On the other hand, we show that the empirical, FUV-based, mass-loss rates are in good agreement with those derived from mass fluxes computed by Lucy (2012). We do not concur with Tramper et al. (2011, 2014) that there is a breakdown in the mass-loss - metallicity relation.
The aim of this study is to analyse and determine elemental abundances for a large sample of distant B stars in the outer Galactic disk in order to constrain the chemical distribution of the Galactic disk and models of chemical evolution of the Galax y. Here, we present preliminary results on a few stars along with the adopted methodology based on securing simultaneous O and Si ionization equilibria with consistent NLTE model atmospheres.
105 - K. Cunha , I. Hubeny , T. Lanz 2011
We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in t he previous study by Cunha & Lambert (1994). We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O)=8.78 and a small dispersion of +/- 0.05 dex, which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994): A(O) = 8.72 +/- 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.
243 - S. Moehler , S. Dreizler , T. Lanz 2010
UV observations of some massive globular clusters have revealed a significant population of stars hotter and fainter than the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either by the late hot flasher scenario where stars experience the helium flash while on the white dwarf cooling curve or by the progeny of the helium-enriched sub-population postulated to exist in some clusters. Previous spectroscopic analyses of blue hook stars in omega Cen and NGC 2808 support the late hot flasher scenario, but the stars contain much less helium than expected and the predicted C and N enrichment cannot be verified. We compare the observed effective temperatures, surface gravities, helium abundances, and carbon line strengths (where detectable) of our targets stars with the predictions of the two aforementioned scenarios. Moderately high resolution spectra of hot HB stars in the globular cluster omega Cen were analysed for radial velocity variations, atmospheric parameters, and abundances using LTE and non-LTE model atmospheres. We find no evidence of close binaries among our target stars. All stars below 30,000K are helium-poor and very similar to HB stars observed in that temperature range in other globular clusters. In the temperature range 30,000K to 50,000K, we find that 28% of our stars are helium-poor (log(He/H) < -1.6), while 72% have roughly solar or super-solar helium abundance (log(He/H) >= -1.5). We also find that carbon enrichment is strongly correlated with helium enrichment, with a maximum carbon enrichment of 3% by mass. A strong carbon enrichment in tandem with helium enrichment is predicted by the late hot flasher scenario, but not by the helium-enrichment scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا