ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on transferring 1E-16-level fractional frequency stability of a master laser operated at 1.5 {mu}m to a slave laser operated at 698 nm, using a femtosecond fiber comb as transfer oscillator. With the 698 nm laser, the 1S_0 - 3P_0 clock tran sition of 87Sr was resolved to a Fourier-limited line width of 1.5 Hz (before: 10 Hz). Potential noise sources contributed by the frequency comb are discussed in detail.
A laser ion source is under development at the IGISOL facility, Jyvaskyla, in order to address deficiencies in the ion guide technique. The key elements of interest are those of a refractory nature, whose isotopes and isomers are widely studied using both laser spectroscopic and high precision mass measurement techniques. Yttrium has been the first element of choice for the new laser ion source. In this work we present a new coupled dye-Ti:Sapphire laser scheme and give a detailed discussion of the results obtained from laser ionization of yttrium atoms produced in an ion guide via joule heating of a filament. The importance of not only gas purity, but indeed the baseline vacuum pressure in the environment outside the ion guide is discussed in light of the fast gas phase chemistry seen in the yttrium system. A single laser shot model is introduced and is compared to the experimental data in order to extract the level of impurities within the gas cell.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا