ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - T. Huege , J.D. Bray , S. Buitink 2014
Supplemented with suitable buffering techniques, the low-frequency part of the SKA can be used as an ultra-precise detector for cosmic-ray air showers at very high energies. This would enable a wealth of scientific applications: the physics of the tr ansition from Galactic to extragalactic cosmic rays could be probed with very high precision mass measurements, hadronic interactions could be studied up to energies well beyond the reach of man-made particle accelerators, air shower tomography could be performed with very high spatial resolution exploiting the large instantaneous bandwidth and very uniform instantaneous $u$-$v$ coverage of SKA1-LOW, and the physics of thunderstorms and possible connections between cosmic rays and lightning initiation could be studied in unprecedented levels of detail. In this article, we describe the potential of the SKA as an air shower radio detector from the perspective of existing radio detection efforts and discuss the associated technical requirements.
466 - T. Huege 2013
A precise understanding of the radio emission from extensive air showers is of fundamental importance for the design of cosmic ray radio detectors as well as the analysis and interpretation of their data. In recent years, tremendous progress has been made in the understanding of the emission physics both in macroscopic and microscopic frameworks. A consistent picture has emerged: the emission stems mainly from time-varying transverse currents and a time-varying charge excess; in addition, Cherenkov-like compression of the emission due to the refractive index gradient in the atmosphere can lead to time-compression of the emitted pulses and thus high-frequency contributions in the signal. In this article, I discuss the evolution of the modelling in recent years, present the emission physics as it is understood today, and conclude with a description and comparison of the models currently being actively developed.
CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers. It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA. As such, it is parameter-free, makes no assumptio ns on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA. In this article, we illustrate the capabilities of CoREAS with simulations carried out in different frequency ranges from tens of MHz up to GHz frequencies, and describe in particular the emission characteristics at high frequencies due to Cherenkov effects arising from the varying refractive index of the atmosphere.
109 - S. Buitink 2010
We study the effect of atmospheric electric fields on the radio pulse emitted by cosmic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weather information and perform full polarization measurements of the radio signal.
96 - S. Buitink , T. Huege , H. Falcke 2009
The development of cosmic ray air showers can be influenced by atmospheric electric fields. Under fair weather conditions these fields are small, but the strong fields inside thunderstorms can have a significant effect on the electromagnetic componen t of a shower. Understanding this effect is particularly important for radio detection of air showers, since the radio emission is produced by the shower electrons and positrons. We perform Monte Carlo simulations to calculate the effects of different electric field configurations on the shower development. We find that the electric field becomes important for values of the order of 1 kV/cm. Not only can the energy distribution of electrons and positrons change significantly for such field strengths, it is also possible that runaway electron breakdown occurs at high altitudes, which is an important effect in lightning initiation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا