ترغب بنشر مسار تعليمي؟ اضغط هنا

Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integrat able chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRWs versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices.
183 - Rolf T. Horn , Gregor Weihs 2010
In materials that do not allow birefringent phase-matching or periodic poling we propose to use waveguides to exploit the tensor structure of the second order nonlinearity for quasi-phase matching of nonlinear interactions. In particular, we concentr ate on curved waveguides in which the interplay between the propagation direction, electric field polarizations and the nonlinearity can change the strength and sign of the nonlinear interaction periodically to achieve quasi-phase matching.
41 - T. Horn 2009
Meson production data play an important role in our understanding of nucleon structure. The combination of reaction channels is sensitive to gluon and charge and flavor non-singlet quark densities and has the potential to provide detailed images of t he QCD quark structure of the nucleon. Quark imaging requires a good understanding of the reaction mechanism, and in particular rigorous tests of factorization of long- and short-distance physics. The higher energies after the Jefferson Lab 12 GeV upgrade provide ideal conditions for such studies, which are an essential prerequisite for studies of valence quark distributions. An electron-ion collider would allow to extend these studies to detailed imaging of sea quarks and gluons.
Cross sections for the p($e,epi^{+}$)n process on $^1$H, $^2$H, $^{12}$C, $^{27}$Al, $^{63}$Cu and $^{197}$Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from $Q^2$=1.1 to 4.8 GeV$^2$ for a fixed center of mass energy of $W$=2.14 GeV. The ratio of $sigma_L$ and $sigma_T$ was extracted from the measured cross sections for $^1$H, $^2$H, $^{12}$C and $^{63}$Cu targets at $Q^2$ = 2.15 and 4.0 GeV$^2$ allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of $Q^2$ are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p($e,epi^{+}$)n reaction from nuclear targets.
159 - H.P. Blok , T. Horn , G.M. Huber 2008
Cross sections for the reaction ${^1}$H($e,epi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data we re taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2.45 GeV$^2$ at an invariant mass of the virtual photon-nucleon system of $W$=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions $sigma_L$, $sigma_T$, $sigma_{LT}$, and $sigma_{TT}$. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable $t$ at the different values of $Q^2$ are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction ${^1}$H($e,epi^+$)$n$.
122 - G.M. Huber , H.P. Blok , T. Horn 2008
The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,epi+)n reaction, and thus is inherently model dep endent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.
88 - T. Horn , et al 2007
The $^{1}$H($e,e^prime pi^+$)n cross section was measured for a range of four-momentum transfer up to $Q^2$=3.91 GeV$^2$ at values of the invariant mass, $W$, above the resonance region. The $Q^2$-dependence of the longitudinal component is consisten t with the $Q^2$-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of $Q^2$. Pion form factor results, while consistent with the $Q^2$-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at $Q^2$=3.91 GeV$^2$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا