ترغب بنشر مسار تعليمي؟ اضغط هنا

Factorization of Short- and Long-range Interactions in Charged Meson Production

42   0   0.0 ( 0 )
 نشر من قبل Tanja Horn
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف T. Horn




اسأل ChatGPT حول البحث

Meson production data play an important role in our understanding of nucleon structure. The combination of reaction channels is sensitive to gluon and charge and flavor non-singlet quark densities and has the potential to provide detailed images of the QCD quark structure of the nucleon. Quark imaging requires a good understanding of the reaction mechanism, and in particular rigorous tests of factorization of long- and short-distance physics. The higher energies after the Jefferson Lab 12 GeV upgrade provide ideal conditions for such studies, which are an essential prerequisite for studies of valence quark distributions. An electron-ion collider would allow to extend these studies to detailed imaging of sea quarks and gluons.

قيم البحث

اقرأ أيضاً

Short-range quark-quark correlations are introduced into the quark-meson coupling (QMC) model phenomenologically. We study the effect of the correlations on the structure of the nucleon in dense nuclear matter. With the addition of correlations, the saturation curve for symmetric nuclear matter is much improved at high density.
The production of K^+ mesons in pA (A = D, C, Cu, Ag, Au) collisions has been investigated at the COoler SYnchrotron COSY-Julich for beam energies T_p = 1.0 - 2.3 GeV. Double differential inclusive pC cross sections at forward angles theta < 12 degre es as well as the target-mass dependence of the K^+ momentum spectra have been measured with the ANKE spectrometer. Far below the free NN threshold at T_{NN}=1.58 GeV the spectra reveal a high degree of collectivity in the target nucleus. From the target-mass dependence of the cross sections at higher energies, the repulsive in-medium potential of K^+ mesons can be deduced. Using pN cross-section parameterisations from literature and our measured pD data we derive a cross-section ratio of sigma(pn -> K^+ X) / sigma(pp -> K^+ X) ~ (3-4).
We present measurements of $rho^0$, $omega$ and K$^{*0}$ spectra in $pi^{-} + $C production interactions at 158 GeV/c and $rho^0$ spectra at 350 GeV/c using the NA61/SHINE spectrometer at the CERN SPS. Spectra are presented as a function of the Feynm ans variable $x_text{F}$ in the range $0 < x_text{F} < 1$ and $0 < x_text{F} < 0.5$ for 158 GeV/c and 350 GeV/c respectively. Furthermore, we show comparisons with previous measurements and predictions of several hadronic interaction models. These measurements are essential for a better understanding of hadronic shower development and for improving the modeling of cosmic ray air showers.
The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation dphino, in d+Au and central Au+Au collisions at $rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in detano$times$dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in dphi and textcolor{black}{depends only weakly on} $deta$, the ridge. Using two systematically independent analyses, textcolor{black}{finite ridge yield} is found to persist for trigger $pt > 6$ GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < pt < 4 GeVc$).
Recent BNL and Jlab data provided new evidence on two nucleon correlations (2NC) in nuclei. The data confirm the validity of the convolution model, describing the spectral function (SF) of a correlated pair moving in the mean field with high and low relative and center-of-mass (cm) momenta, respectively. The model is built assuming that the wave function (WF) of a nucleus A, describing a configuration where the cm momentum of a correlated pair is low and its relative momentum is high, factorizes into the product of the two-body WF and that of the A-2 system. Such a factorization has been shown to occur in nuclear matter (NM). Here it is shown that few-body systems exhibit factorization, which seems to be therefore a general property, to be reproduced also in studies of the WF of finite nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا