ترغب بنشر مسار تعليمي؟ اضغط هنا

We have in mind a register of qubits for an quantum information system, and consider its decoherence in an idealized but typical situation. Spontaneous decay and other couplings to the far environment considered as the world outside the quantum appar atus will be neglected, while couplings to quantum states within the apparatus, i.e. to a near environment are assumed to dominate. Thus the central system couples to the near environment which in turn couples to a far environment. Considering that the dynamics in the near environment is not sufficiently well known or controllable, we shall use random matrix methods to obtain analytic results. We consider a simplified situation where the central system suffers weak dephasing from the near environment, which in turn is coupled randomly to the far environment. We find the anti-intuitive result that increasing the coupling between near and far environment actually protects the central qubit.
109 - M. Carrera , T. Gorin , 2014
This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where the decoherence time is of the same order of magnitude than the environmental Heisenberg time. We derive an analytical expression in the linear response approximation, and study its accuracy by comparison with numerical simulations. We discuss a series of unusual properties, such as purity oscillations, strong signatures of spectral correlations (in the environment Hamiltonian), memory effects and symmetry breaking equilibrium states.
This paper is based on recent work which provided an exact analytical description of scattering fidelity experiments with a microwave cavity under the variation of an antenna coupling [Kober et al., Phys. Rev. E 82, 036207 (2010)]. It is shown that t his description can also be used to predict the decay of the fidelity amplitude for arbitrary Hermitian perturbations of a closed system. Two applications are presented: First, the known result for global perturbations is re-derived, and second, the exact analytical expression for the perturbation due to a moving S-wave scatterer is worked out. The latter is compared to measured data from microwave experiments, which have been reported some time ago. Finally, we generalize an important relation between fidelity decay and parametric level correlations to arbitrary perturbations.
111 - T. Gorin , L. Lara , 2009
We consider Grovers search algorithm on a model quantum computer implemented on a chain of four or five nuclear spins with first and second neighbour Ising interactions. Noise is introduced into the system in terms of random fluctuations of the exter nal fields. By averaging over many repetitions of the algorithm, the output state becomes effectively a mixed state. We study its overlap with the nominal output state of the algorithm, which is called fidelity. We find either an exponential or a Gaussian decay for the fidelity as a function of the strength of the noise, depending on the type of noise (static or random) and whether error supression is applied (the 2pi k-method) or not.
129 - T. Gorin , C. Pineda , H. Kohler 2008
Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence, and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.
463 - T. Gorin , G. V. Lopez 2007
This paper presents a powerfull method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group in [J. Math. Phys. 43, 3342 (2002)], and is here u sed to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas turn out to be of similar form. They are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows to obtain analytical expressions very efficiently. Those expressions contain the matrix dimension as a free parameter.
277 - G. V. Lopez , T. Gorin , L. Lara 2007
We implement Grovers quantum search algorithm on a nuclear spin chain quantum computer, taking into Ising type interactions between nearest and second nearest neighbours into account. The performance of the realisation of the algorithm is studied by numerical simulations with four spins. We determine the temporal behaviour of the fidelity during the algorithm, and we compute the final fidelity as a function of the Rabi frequency. For the latter, we obtained pronounced maxima at frequencies which fulfil the condition of the (2pi k)-method with respect to the second nearest neighbour interactions.
103 - G. V. Lopez , T. Gorin , 2007
We consider the realization of a quantum computer in a chain of nuclear spins coupled by an Ising interaction. Quantum algorithms can be performed with the help of appropriate radio-frequency pulses. In addition to the standard nearest-neighbor Ising coupling, we also allow for a second neighbor coupling. It is shown, how to apply the 2pi k method in this more general setting, where the additional coupling eventually allows to save a few pulses. We illustrate our results with two numerical simulations: the Shor prime factorization of the number 4 and the teleportation of a qubit along a chain of 3 qubits. In both cases, the optimal Rabi frequency (to suppress non-resonant effects) depends primarily on the strength of the second neighbor interaction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا