ترغب بنشر مسار تعليمي؟ اضغط هنا

Advanced spectral and statistical data analysis techniques have greatly contributed to shaping our understanding of microphysical processes in plasmas. We review some of the main techniques that allow for characterising fluctuation phenomena in geosp ace and in laboratory plasma observations. Special emphasis is given to the commonalities between different disciplines, which have witnessed the development of similar tools, often with differing terminologies. The review is phrased in terms of few important concepts: self-similarity, deviation from self-similarity (i.e. intermittency and coherent structures), wave-turbulence, and anomalous transport.
The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earths atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earths climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earths atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modeled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. Omissis. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI datasets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.
Multi-wavelength solar images in the EUV are routinely used for analysing solar features such as coronal holes, filaments, and flares. However, images taken in different bands often look remarkably similar as each band receives contributions coming f rom regions with a range of different temperatures. This has motivated the search for empirical techniques that may unmix these contributions and concentrate salient morphological features of the corona in a smaller set of less redundant source images. Blind Source Separation (BSS) precisely does this. Here we show how this novel concept also provides new insight into the physics of the solar corona, using observations made by SDO/AIA. The source images are extracted using a Bayesian positive source separation technique. We show how observations made in six spectral bands, corresponding to optically thin emissions, can be reconstructed by linear combination of three sources. These sources have a narrower temperature response and allow for considerable data reduction since the pertinent information from all six bands can be condensed in only one single composite picture. In addition, they give access to empirical temperature maps of the corona. The limitations of the BSS technique and some applications are briefly discussed.
Two major issues in the specification of the thermospheric density are the definition of proper solar inputs and the empirical modeling of thermosphere response to solar and to geomagnetic forcings. This specification is crucial for the tracking of l ow Earth orbiting satellites. Here we address both issues by using 14 years of daily density measurements made by the Stella satellite at 813 km altitude and by carrying out a multiscale statistical analysis of various solar inputs. First, we find that the spectrally integrated solar emission between 26-34 nm offers the best overall performance in the density reconstruction. Second, we introduce linear parametric transfer function models to describe the dynamic response of the density to the solar and geomagnetic forcings. These transfer function models lead to a major error reduction and in addition open new perspectives in the physical interpretation of the thermospheric dynamics.
The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high f requency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earths electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.
85 - T. Dudok de Wit 2011
Data gaps are ubiquitous in spectral irradiance data, and yet, little effort has been put into finding robust methods for filling them. We introduce a data-adaptive and nonparametric method that allows us to fill data gaps in multi-wavelength or in m ultichannel records. This method, which is based on the iterative singular value decomposition, uses the coherency between simultaneous measurements at different wavelengths (or between different proxies) to fill the missing data in a self-consistent way. The interpolation is improved by handling different time scales separately. Two major assets of this method are its simplicity, with few tuneable parameters, and its robustness. Two examples of missing data are given: one from solar EUV observations, and one from solar proxy data. The method is also appropriate for building a composite out of partly overlapping records.
Solar flares presumably have an impact on the deepest layers of the solar atmosphere and yet the observational evidence for such an impact is scarce. Using ten years of measurements of the Na D$_{1}$ and Na D$_2$ Fraunhofer lines, measured by GOLF on board SOHO, we show that this photospheric line is indeed affected by flares. The effect of individual flares is hidden by solar oscillations, but a statistical analysis based on conditional averaging reveals a clear signature. Although GOLF can only probe one single wavelength at a time, we show that both wings of the Na line can nevertheless be compared. The varying line asymmetry can be interpreted as an upward plasma motion from the lower solar atmosphere during the peak of the flare, followed by a downward motion.
Many studies assume that the solar irradiance in the EUV can be decomposed into different contributions, which makes the modelling of the spectral variability considerably easier. We consider a different approach, in which these contributions are not imposed a priori but are effectively and robustly inferred from spectral irradiance measurements. This is a source separation problem with a positivity constraint, for which we use a Bayesian solution. Using five years of daily EUV spectra recorded by the TIMED/SEE satellite, we show that the spectral irradiance can be decomposed into three elementary spectra. Our results suggest that they describe different layers of the solar atmosphere rather than specific regions. The temporal variability of these spectra is discussed.
The analysis of weak variations in the energetic particle flux, as detected by neutron or muon monitors, can often be considerably improved by analysing data from monitor networks and thereby exploiting the spatial coherence of the flux. We present a statistical framework for carrying out such an analysis and discuss its physical interpretation. Two other applications are also presented: filling data gaps and removing trends. This study focuses on the method and its various uses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا