ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Herschel/PACS observations of extended [CII]157.7{mu}m line emission detected on ~ 1 - 10 kpc scales in 60 local luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS). We find that most of the extra-nu clear emission show [CII]/FIR ratios >~ 4 x 10^-3, larger than the mean ratio seen in the nuclei, and similar to those found in the extended disks of normal star-forming galaxies and the diffuse inter-stellar medium (ISM) of our Galaxy. The [CII] deficits found in the most luminous local LIRGs are therefore restricted to their nuclei. There is a trend for LIRGs with warmer nuclei to show larger differences between their nuclear and extra-nuclear [CII]/FIR ratios. We find an anti-correlation between [CII]/FIR and the luminosity surface density, {Sigma}_IR, for the extended emission in the spatially-resolved galaxies. However, there is an offset between this trend and that found for the LIRG nuclei. We use this offset to derive a beam filling-factor for the star-forming regions within the LIRG disks of ~ 6 % relative to their nuclei. We confront the observed trend to photo-dissociation region (PDR) models and find that the slope of the correlation is much shallower than the model predictions. Finally, we compare the correlation found between [CII]/FIR and {Sigma}_IR with measurements of high-redshift starbursting IR-luminous galaxies.
We present the first results of a survey of the [CII]158um emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky Survey (GOALS) sample, obtained with the PACS instrument on board Herschel. The [CII] lumino sities of the LIRGs in GOALS range from ~10^7 to 2x10^9 Lsun. We find that LIRGs show a tight correlation of [CII]/FIR with far-IR flux density ratios, with a strong negative trend spanning from ~10^-2 to 10^-4, as the average temperature of dust increases. We find correlations between the [CII]/FIR ratio and the strength of the 9.7um silicate absorption feature as well as with the luminosity surface density of the mid-IR emitting region (Sigma_MIR), suggesting that warmer, more compact starbursts have substantially smaller [CII]/FIR ratios. Pure star-forming (SF) LIRGs have a mean [CII]/FIR ~ 4x10^-3, while galaxies with low 6.2um PAH equivalent widths (EWs), indicative of the presence of active galactic nuclei (AGN), span the full range in [CII]/FIR. However, we show that even when only pure SF galaxies are considered, the [CII]/FIR ratio drops by an order of magnitude, from 10^-2 to 10^-3, with Sigma_MIR and Sigma_IR, implying that the [CII] luminosity is not a good indicator of the star formation rate (SFR) for most LIRGs, for it does not scale linearly with the warm dust emission. Moreover, even in LIRGs in which we detect an AGN in the mid-IR, the majority (2/3) of galaxies show [CII]/FIR >= 10^-3 typical of high 6.2um PAH EW sources, suggesting that most AGNs do not contribute significantly to the far-IR emission. We provide an empirical relation between the [CII]/FIR and the specific SFR (SSFR) for SF LIRGs. Finally, we present predictions for the starburst size based on the observed [CII] and far-IR luminosities which should be useful for comparing with results from future surveys of high-redshift galaxies with ALMA and CCAT.
The unified model of active galactic nuclei (AGN) claims that the properties of AGN depend on the viewing angle of the observer with respect to a toroidal distribution of dust surrounding the nucleus. Both the mid-infrared (MIR) attenuation and conti nuum luminosity are expected to be related to dust associated with the torus. Therefore, isolating the nuclear component is essential to study the MIR emission of AGN. We have compiled all the T-ReCS spectra (Gemini observatory) available in the N-band for 22 AGN: 5 Type-1 and 17 Type-2 AGN. The high angular resolution of the T-ReCs spectra allows us to probe physical regions of 57 pc (median). We have used a novel pipeline called RedCan capable of producing flux- and wavelength-calibrated spectra for the CanariCam (GTC) and T-ReCS (Gemini) instruments. We have measured the fine-structure [SIV] at 10.5 microns and the PAH at 11.3 microns line strengths together with the silicate absorption/emission features. We have also compiled Spitzer/IRS spectra to understand how spatial resolution influences the results. The 11.3 microns PAH feature is only clearly detected in the nuclear spectra of two AGN, while it is more common in the Spitzer data. For those two objects the AGN emission in NGC7130 accounts for more than 80% of the MIR continuum at 12 microns while in the case of NGC1808 the AGN is not dominating the MIR emission. This is confirmed by the correlation between the MIR and X-ray continuum luminosities. The [SIV] emission line at 10.5 microns, which is believed to originate in the narrow line region, is detected in most AGN. We have found an enhancement of the optical depth at 9.7 microns in the high-angular resolution data for higher values of NH. Clumpy torus models reproduce the observed values only if the host-galaxy properties are taken into account.
159 - T. Diaz-Santos 2010
We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey (GOALS) sample based on 5-15um low resolution spectra obtained with the IRS on Spitzer. We calculate the fraction of extended emission a s a function of wavelength for the galaxies in the sample, FEE_lambda. We can identify 3 general types of FEE_lambda: one where it is constant, one where features due to emission lines and PAHs appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7um. More than 30% of the galaxies have a median FEE_lambda larger than 0.5 implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0<=FEE_13.2um<=0.85). The large values of FEE_13.2um that we find in many LIRGs suggest that their extended MIR continuum emission originates in scales up to 10kpc. The mean size of the LIRG cores at 13.2um is 2.6kpc. However, once the LIR of the systems reaches the threshold of ~10^11.8Lsun, all sources become clearly more compact, with FEE_13.2um<=0.2, and their cores are unresolved. Our estimated upper limit for the core size of ULIRGs is less than 1.5kpc. The analysis indicates that the compactness of systems with LIR>~10^11.25Lsun strongly increases in those classified as mergers in their final stage of interaction. The FEE_13.2um is also related to the contribution of an active galactic nucleus (AGN) to the MIR. Galaxies which are more AGN-dominated are less extended, independently of their LIR. We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f_60um/f_100um) color. This enables us to place a lower limit to the area in a galaxy from where the cold dust emission may originate, a prediction which can be tested soon with the Herschel Space Telescope.
66 - T. Diaz-Santos 2010
We present a high spatial (diffraction-limited) resolution (~0.3) mid-infrared (MIR) spectroscopic study of the nuclei and star-forming regions of 4 local luminous infrared galaxies (LIRGs) using T-ReCS on the Gemini South telescope. We investigate t he spatial variations of the features seen in the N-band spectra of LIRGs on scales of ~100 pc, which allow us to separate the AGN emission from that of the star formation (SF). We compare our Gemini T-ReCS nuclear and integrated spectra of LIRGs with those obtained with Spitzer IRS. The 9.7um silicate absorption feature is weaker in the nuclei of the LIRGs than in the surrounding regions. This is probably due to the either clumpy or compact environment of the central AGN or young, nuclear starburst. We find that the [NeII] luminosity surface density is tightly and directly correlated with that of Pa-alpha for the LIRG star-forming regions (slope of 1.00+-0.02). Although the 11.3um PAH feature shows also a trend with Pa-alpha, this is not common for all the regions. We also find that the [NeII]Pa-alpha ratio does not depend on the Pa-alpha equivalent width (EW), i.e., on the age of the ionizing stellar populations, suggesting that, on the scales probed here, the [NeII] emission line is a good tracer of the SF activity in LIRGs. On the other hand, the 11.3um PAHPa-alpha ratio increases for smaller values of the Pa-alpha EW (increasing ages), indicating that the 11.3um PAH feature can also be excited by older stars than those responsible for the Pa-alpha emission. Additional high spatial resolution observations are essential to investigate, in a statistical way, the star formation in local LIRGs at the smallest scales and to probe ultimately whether they share the same physical properties as high-z LIRGs, ULIRGs and submillimiter galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا