ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - T. Abe , P. Maris , T. Otsuka 2021
We report $J^pi = 0^+$ ground-state energies and point-proton radii of $^4$He, $^8$Be, $^{12}$C, $^{16}$O and $^{20}$Ne nuclei calculated by the {it ab initio} no-core Monte Carlo shell model with the JISP16 and Daejeon16 nonlocal $NN$ interactions. Ground-state energies are obtained in the basis spaces up to 7 oscillator shells ($N_{rm shell} = 7$) with several oscillator energies ($hbar omega$) around the optimal oscillator energy for the convergence of ground-state energies. These energy eigenvalues are extrapolated to obtain estimates of converged ground state energies in each basis space using energy variances of computed energy eigenvalues. We further extrapolate these energy-variance-extrapolated energies obtained in the finite basis spaces to infinite basis-space results with an empirical exponential form. This form features a dependence on the basis-space size but is independent of the $hbaromega$ used for the harmonic-oscillator basis functions. Point-proton radii for these states of atomic nuclei are also calculated following techniques employed for the energies. From these results, it is found that the Daejeon16 $NN$ interaction provides good agreement with experimental data up to approximately $^{16}$O, while the JISP16 $NN$ interaction provides good agreement with experimental data up to approximately $^{12}$C. Beyond these nuclei, the interactions produce overbinding accompanied by radii that are too small. These findings suggest and encourage further revisions of nonlocal $NN$ interactions towards the investigation of nuclear structure in heavier-mass regions.
141 - T. Otsuka , S. Adachi , M. Hattori 2021
Radio absorptive materials (RAMs) are key elements for receivers in the millimeter-wave range. For astronomical applications, cryogenic receivers are widely used to achieve a high-sensitivity. These cryogenic receivers, in particular the receivers fo r the cosmic microwave background, require that the RAM has low surface reflectance ($lesssim 1%$) in a wide frequency range (20--300 GHz) to minimize the undesired stray light to detectors. We develop a RAM that satisfies this requirement based on a production technology using a 3D-printed mold (named as RAM-3pm). This method allows us to shape periodic surface structures to achieve a low reflectance. A wide range of choices for the absorptive materials is an advantage. We survey the best material for the RAM-3pm. We measure the index of refraction ($n$) and the extinction coefficient ($kappa$) at liquid nitrogen temperature as well as at room temperature of 17 materials. We also measure the reflectance at the room temperature for the selected materials. The mixture of an epoxy adhesive (STYCAST-2850FT) and a carbon fiber (K223HE) achieves the best performance. We estimate the optical performance at the liquid nitrogen temperature by a simulation based on the measured $n$ and $kappa$. The RAM-3pm made with this material satisfies the requirement except at the lower edge of the frequency range ($sim$20 GHz). We also estimate the reflectance of a larger pyramidal structure on the surface. We find a design to satisfy our requirement.
66 - K. Takeda , J. Yoneda , T. Otsuka 2018
Electron spins confined in quantum dots are an attractive system to realize high-fidelity qubits owing to their long coherence time. With the prolonged spin coherence time, however, the control fidelity can be limited by systematic errors rather than decoherence, making characterization and suppression of their influence crucial for further improvement. Here we report that the control fidelity of Si/SiGe spin qubits can be limited by the microwave-induced frequency shift of electric dipole spin resonance and it can be improved by optimization of control pulses. As we increase the control microwave amplitude, we observe a shift of the qubit resonance frequency, in addition to the increasing Rabi frequency. We reveal that this limits control fidelity with a conventional amplitude-modulated microwave pulse below 99.8%. In order to achieve a gate fidelity > 99.9%, we introduce a quadrature control method, and validate this approach experimentally by randomized benchmarking. Our finding facilitates realization of an ultra-high fidelity qubit with electron spins in quantum dots.
The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems, for instance, atomic nuclei. It is shown that atomic nuclei are not necessarily like simple rigid vases containing almost free nuc leons, in contrast to the naive Fermi liquid picture. Nuclear forces are demonstrated to be rich enough to change single-particle energies for each eigenstate, so as to enhance the relevant collective mode. When the quantum self-organization occurs, single-particle energies can be self-organized (or self-optimized), being enhanced by (i) two quantum liquids, e.g., protons and neutrons, (ii) two major force components, e.g., quadrupole interaction (to drive collective mode) and monopole interaction (to control resistance). Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. Actual cases such as shape coexistence, quantum phase transition, octupole vibration/deformation, super deformation, etc. can be studied with this scope. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger. With larger numbers of them, the effects of the organization can be more significant. The quantum self-organization is a general phenomenon, and is expected to be found in other quantum systems.
85 - J. Yoneda , K. Takeda , T. Otsuka 2017
Recent advances towards spin-based quantum computation have been primarily fuelled by elaborate isolation from noise sources, such as surrounding nuclear spins and spin-electric susceptibility, to extend spin coherence. In the meanwhile, addressable single-spin and spin-spin manipulations in multiple-qubit systems will necessitate sizable spin-electric coupling. Given background charge fluctuation in nanostructures, however, its compatibility with enhanced coherence should be crucially questioned. Here we realise a single-electron spin qubit with isotopically-enriched phase coherence time (20 microseconds) and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge (instead of conventional magnetic) noise featured by a 1/f spectrum over seven decades of frequency. The qubit nevertheless exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average. Our work strongly suggests that designing artificial spin-electric coupling with account taken of charge noise is a promising route to large-scale spin-qubit systems having fault-tolerant controllability.
A two-dimensional arrangement of quantum dots with finite inter-dot tunnel coupling provides a promising platform for studying complicated spin correlations as well as for constructing large-scale quantum computers. Here, we fabricate a tunnel-couple d triangular triple quantum dot with a novel gate geometry in which three dots are defined by positively biasing the surface gates. At the same time, the small area in the center of the triangle is depleted by negatively biasing the top gate placed above the surface gates. The size of the small center depleted area is estimated from the Aharonov-Bohm oscillation measured for the triangular channel but incorporating no gate-defined dots, with a value consistent with the design. With this approach, we can bring the neighboring gate-defined dots close enough to one another to maintain a finite inter-dot tunnel coupling. We finally confirm the presence of the inter-dot tunnel couplings in the triple quantum dot from the measurement of tunneling current through the dots in the stability diagram. We also show that the charge occupancy of each dot and that the inter-dot tunnel couplings are tunable with gate voltages.
Fault-tolerant quantum operation is a key requirement for the development of quantum computing. This has been realized in various solid-state systems including isotopically purified silicon which provides a nuclear spin free environment for the qubit s, but not in industry standard natural (unpurified) silicon. Here we demonstrate an addressable fault-tolerant qubit using a natural silicon double quantum dot with a micromagnet optimally designed for fast spin control. This optimized design allows us to achieve the optimum Rabi oscillation quality factor Q = 140 at a Rabi frequency of 10 MHz in the frequency range two orders of magnitude higher than that achieved in previous studies. This leads to a qubit fidelity of 99.6 %, which is the highest reported for natural silicon qubits and comparable to that obtained in isotopically purified silicon quantum-dot-based qubits. This result can inspire contributions from the industrial and quantum computing communities.
We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.
The shapes of neutron-rich exotic Ni isotopes are studied. Large-scale shell model calculations are performed by advanced Monte Carlo Shell Model (MCSM) for the $pf$-$g_{9/2}$-$d_{5/2}$ model space. Experimental energy levels are reproduced well by a single fixed Hamiltonian. Intrinsic shapes are analyzed for MCSM eigenstates. Intriguing interplays among spherical, oblate, prolate and gamma-unstable shapes are seen including shape fluctuations, $E$(5)-like situation, the magicity of doubly-magic $^{56,68,78}$Ni, and the coexistence of spherical and strongly deformed shapes. Regarding the last point, strong deformation and change of shell structure can take place simultaneously, being driven by the combination of the tensor force and changes of major configurations within the same nucleus.
Structural evolution in neutron-rich Os and W isotopes is investigated in terms of the Interacting Boson Model (IBM) Hamiltonian determined by (constrained) Hartree-Fock-Bogoliubov (HFB) calculations with the Gogny-D1S Energy Density Functional (EDF) . The interaction strengths of the IBM Hamiltonian are produced by mapping the potential energy surface (PES) of the Gogny-EDF with quadrupole degrees of freedom onto the corresponding PES of the IBM system. We examine the prolate-to-oblate shape/phase transition which is predicted to take place in this region as a function of neutron number $N$ within the considered Os and W isotopic chains. The onset of this transition is found to be more rapid compared to the neighboring Pt isotopes. The calculations also allow prediction of spectroscopic variables (excited state energies and reduced transition probabilities) which are presented for the neutron-rich $^{192,194,196}$W nuclei, for which there is only very limited experimental data available to date.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا