ﻻ يوجد ملخص باللغة العربية
Radio absorptive materials (RAMs) are key elements for receivers in the millimeter-wave range. For astronomical applications, cryogenic receivers are widely used to achieve a high-sensitivity. These cryogenic receivers, in particular the receivers for the cosmic microwave background, require that the RAM has low surface reflectance ($lesssim 1%$) in a wide frequency range (20--300 GHz) to minimize the undesired stray light to detectors. We develop a RAM that satisfies this requirement based on a production technology using a 3D-printed mold (named as RAM-3pm). This method allows us to shape periodic surface structures to achieve a low reflectance. A wide range of choices for the absorptive materials is an advantage. We survey the best material for the RAM-3pm. We measure the index of refraction ($n$) and the extinction coefficient ($kappa$) at liquid nitrogen temperature as well as at room temperature of 17 materials. We also measure the reflectance at the room temperature for the selected materials. The mixture of an epoxy adhesive (STYCAST-2850FT) and a carbon fiber (K223HE) achieves the best performance. We estimate the optical performance at the liquid nitrogen temperature by a simulation based on the measured $n$ and $kappa$. The RAM-3pm made with this material satisfies the requirement except at the lower edge of the frequency range ($sim$20 GHz). We also estimate the reflectance of a larger pyramidal structure on the surface. We find a design to satisfy our requirement.
We present the design, manufacturing technique, and characterization of a 3D-printed broadband graded index millimeter wave absorber. The absorber is additively manufactured using a fused filament fabrication (FFF) 3D printer out of a carbon-loaded h
Microwave Kinetic Inductance Detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the deve
In order to better understand the variation mechanism of ozone abundance in the middle atmosphere, the simultaneous monitoring of ozone and other minor molecular species, which are related to ozone depletion, is the most fundamental and critical meth
We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber w
We report on the first use of laser ablation to make sub-millimeter, broad-band, anti-reflection coatings (ARC) based on sub-wavelength structures (SWS) on alumina and sapphire. We used a 515 nm laser to produce pyramid-shaped structures with pitch o