ترغب بنشر مسار تعليمي؟ اضغط هنا

We have developed a gating foil for the time projection chamber envisaged as a central tracker for the international linear collider experiment. It has a structure similar to the Gas Electron Multiplier (GEM) with a higher optical aperture ratio and functions as an ion gate without gas amplification. The transmission rate for electrons was measured in a counting mode for a wide range of the voltages applied across the foil using an $^{55}$Fe source and a laser in the absence of a magnetic field. The blocking power of the foil against positive ions was estimated from the electron transmissions.
66 - T. Ogawa 2017
One of the potential problems of a Micro-Pattern Gaseous Detector (MPGD)-based Time Projection Chamber (TPC) is the Ion back Flow (IBF): ions generated through the avalanche amplification process flow back to the drift volume of the TPC and disarrang e an electric field inside it. Consequently non-negligible degradation of azimuthal spatial resolution is caused due to this IBF. Meanwhile, it is necessary to collect primary ionized electrons to maintain intrinsic performance of the MPGDs. The MPGD based TPC is currently planned to be used as a central tracking detector of the International Large Detector (ILD), which is one of the detector concepts for the future International Linear Collider (ILC) project, and which requires fine azimuthal spatial resolution of less than 100 ${rm mu m}$ over the drift length of the TPC to attain high momentum resolution. Because of a unique beam structure of the ILC, the IBF is a critical issue for the realization of the ILD-TPC. Not only to suppress the ion back-flow to the drift volume, but also to allow the primary electrons pass through, a large aperture GEM-like gating device has been developed. Several bench tests for confirming the performance of the gating device have been conducted, besides that, beam test with the full detector module equipped with the gating device was carried out to verify the resolution that the full module can provide. As a result, it turned out that the developed gating device fulfills requirements for maintaining the performance of the MPGD based TPC, and it has sufficient performance for the central tracker of the ILD at the ILC.
We theoretically investigated the dependence of higher-order harmonic generation (HHG) in solid-state materials on the ellipticity of the electric field. We found that in the multiphoton absorption and ac Zener regimes, the intensity of HHG monotonic ally decreases with increasing ellipticity of the incident electric field, while in the semimetal regime, the intensity reaches a maximum for finite values of ellipticity. Moreover, the characteristics of the polarization of the emitted HHG change depending on the field intensity; only parallel emissions with respect to the major axis exist in the multiphoton absorption and ac Zener regimes, while both parallel and perpendicular emissions exist in the semimetal regime. These peculiar characteristics of the semimetal regime can be understood on the basis of changes in the HHG mechanism and may be able to be identified in experiments utilizing solid-state materials such as narrow-gap semiconductors.
The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of HI gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense HI gas. We found that the HI gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, cold dense sheath is formed around the interface between the jet and the HI gas. The radial speed of the cold, dense gas in the sheath is a few km/s almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the HI-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of W50 nebula surrounding the galactic jet source SS433.
183 - M. Mosonyi , F. Hiai , T. Ogawa 2008
We apply the recent results of F. Hiai, M. Mosonyi and T. Ogawa [arXiv:0707.2020, to appear in J. Math. Phys.] to the asymptotic hypothesis testing problem of locally faithful shift-invariant quasi-free states on a CAR algebra. We use a multivariate extension of Szegos theorem to show the existence of the mean Chernoff and Hoeffding bounds and the mean relative entropy, and show that these quantities arise as the optimal error exponents in suitable settings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا