ﻻ يوجد ملخص باللغة العربية
We theoretically investigated the dependence of higher-order harmonic generation (HHG) in solid-state materials on the ellipticity of the electric field. We found that in the multiphoton absorption and ac Zener regimes, the intensity of HHG monotonically decreases with increasing ellipticity of the incident electric field, while in the semimetal regime, the intensity reaches a maximum for finite values of ellipticity. Moreover, the characteristics of the polarization of the emitted HHG change depending on the field intensity; only parallel emissions with respect to the major axis exist in the multiphoton absorption and ac Zener regimes, while both parallel and perpendicular emissions exist in the semimetal regime. These peculiar characteristics of the semimetal regime can be understood on the basis of changes in the HHG mechanism and may be able to be identified in experiments utilizing solid-state materials such as narrow-gap semiconductors.
High harmonic generation (HHG) has unleashed the power of strong laser physics in solids. Here we investigate HHG from a large system, solid C$_{60}$, with 240 valence electrons engaging harmonic generation at each crystal momentum, the first of this
High-harmonic generation (HHG), a typical nonlinear optical effect, has been actively studied in electron systems such as semiconductors and superconductors. As a natural extension, we theoretically study HHG from electric polarization, spin current
We investigate high-order harmonic generation (HHG) in graphene with a quantum master equation approach. The simulations reproduce the observed enhancement in HHG in graphene under elliptically polarized light [N. Yoshikawa et al, Science 356, 736 (2
The sub-cycle dynamics of electrons driven by strong laser fields is central to the emerging field of attosecond science. We demonstrate how the dynamics can be probed through high-order harmonic generation, where different trajectories leading to th
Higher-order topology yields intriguing multidimensional topological phenomena, while Weyl semimetals have unconventional properties such as chiral anomaly. However, so far, Weyl physics remain disconnected with higher-order topology. Here, we report