ترغب بنشر مسار تعليمي؟ اضغط هنا

Sr$_2$RuO$_4$ is a leading candidate for chiral $p$-wave superconductivity. The detailed mechanism of superconductivity in this material is still the subject of intense investigations. Since superconductivity is sensitive to the topology of the Fermi surface (the contour of zero-energy quasi-particle excitations in the momentum space in the normal state), changing this topology can provide a strong test of theory. Recent experiments tuned the Fermi surface topology efficiently by applying planar anisotropic strain. Using functional renormalization group theory, we study the superconductivity and competing orders in Sr$_2$RuO$_4$ under strain. We find a rapid initial increase in the superconducting transition temperature $T_c$, which can be associated with the evolution of the Fermi surface toward a Lifshitz reconstruction under increasing strain. Before the Lifshitz reconstruction is reached, however, the system switches from the superconducting state to a spin density wave state. The theory agrees well with recent strain experiments showing an enhancement of $T_c$ followed by an intriguing sudden drop.
Recent angle resolved photoemission spectrascope (ARPES) experiments on strongly underdoped Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ cuprates have reported an unusual gap in the nodal direction. Transport experiments on these cuprates found variable ran ge hopping behavior observed. These cuprates have both electron and hole doping which has led to proposals that this cuprate is analogous to a partially compensated semiconductors. The nodal gap then corresponds to the Efros-Schklovskii(ES) gap in such semiconductors. We calculate the doping dependence and temperature dependence of a ES gap model and find support for an Efros-Schklovskii model.
The opening of the pseudogap in underdoped cuprates breaks up the Fermi surface, which may lead to a breakup of the d-wave order parameter into two subband amplitudes and a low energy Leggett mode due to phase fluctuations between them. This causes a large increase in the temperature range of superconducting fluctuations with an overdamped Leggett mode. Almost resonant scattering of inter-subband phonons to a state with a pair of Leggett modes causes anomalously strong damping. In the ordered state, the Leggett mode develops a finite energy, suppressing the anomalous phonon damping but leading to an anomaly in the phonon dispersion.
Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states (iPEPS) confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only slightly lower energy than the stripe with anti-phase d-wave order. The optimal stripe filling is not constant but increases with J/t. A nematic anisotropy reduces the pairing amplitude and the energies of stripe phases are lowered relative to the uniform state with increasing nematicity.
Recent transport properties on the stripe phase in La$_{text{1.875}}$Ba$_{text{01.25}}$CuO$_{text{4}}$ by Li textit{et al.} found 2-dimensional superconductivity over a wide temperature range including a Berezinski-Kosterlitz-Thouless transition at a temperature T=16K, with 3-dimensional superconducting (SC) ordering only at T=4K. These results contradict the long standing belief that the onset of superconductivity is suppressed by stripe ordering and suggest coexistence of stripe and SC phases. The lack of 3-D superconducting order above T=4K requires an antiphase ordering in the SC state to suppress the interlayer Josephson coupling as proposed by Berg textit{et al.}. Here we use a renormalized mean field theory for a generalized t-J model to examine in detail the energetics of the spin and charge stripe ordered SC states including possible antiphase domains in the SC order. We find that the energies of these modulated states are very close to each other and that the anisotropy present in the low temperature tetragonal crystal structure favors stripe resonating valence bond states. The stripe antiphase SC states are found to have energies very close,but always above, the ground state energy which suggests additional physical effects are responsible for their stability.
We use the functional renormalization group to analyze the temperature dependence of the quasi-particle scattering rates in the two-dimensional Hubbard model below half-filling. Using a band structure appropriate to overdoped Tl2Ba2CuO(6+x) we find a strongly angle dependent term linearly dependent on temperature which derives from an increasing scattering vertex as the energy scale is lowered. This behavior agrees with recent experiments and confirms earlier conclusions on the origin of the breakdown of the Landau Fermi liquid near the onset of superconductivity.
Magnetic field induced antiferromagnetic phase of the underdoped cuprates is studied within the t-t-J model. A magnetic field suppresses the pairing amplitude, which in turn may induce antiferromagnetism. We apply our theory to interpret the recently reported quantum oscillations in high magnetic field in ortho-II YBa2Cu3O6.5 and propose that the total hole density abstracted from the oscillation period is reduced by 50% due to the antiferromagnetism.
236 - Kai-Yu Yang , T. M. Rice , 2007
Recent scanning tunneling microscopy on BSCCO 2212 has revealed a substantial spatial supermodulation of the energy gap in the superconducting state. We propose that this gap modulation is due to the superlattice modulations of the atoms in the struc ture, and hence the parameters in a microscopic model of the CuO2 plane. The gap modulation is estimated using renormalized mean field theory for a t-t-J model on a superlattice. The results compare well with experiment.
126 - T. F. A. Muller 1998
We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotrop y between the t_perp t_par intra-ladder hopping and small inter-ladder hopping. A downfolding method shows that this anisotropy arises from the ladder structure.The conductivity perpendicular to the ladders is computed assuming incoherent tunneling giving a value close to experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا