ترغب بنشر مسار تعليمي؟ اضغط هنا

The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially at low electron density , the width of the Coulomb gap at first increases sharply with in-plane field, but then abruptly levels off. This behavior appears to coincide with the known transition from partial to complete spin polarization of the half-filled lowest Landau level. The tunneling gap therefore opens a new window onto the spin configuration of two-dimensional electron systems at high magnetic field.
Interlayer tunneling measurements in the strongly correlated bilayer quantized Hall phase at $ u_T=1$ are reported. The maximum, or critical current for tunneling at $ u_T=1$, is shown to be a well-defined global property of the coherent phase, insen sitive to extrinsic circuit effects and the precise configuration used to measure it, but also exhibiting a surprising scaling behavior with temperature. Comparisons between the experimentally observed tunneling characteristics and a recent theory are favorable at high temperatures, but not at low temperatures where the tunneling closely resembles the dc Josephson effect. The zero-bias tunneling resistance becomes extremely small at low temperatures, vastly less than that observed at zero magnetic field, but nonetheless remains finite. The temperature dependence of this tunneling resistance is similar to that of the ordinary in-plane resistivity of the quantum Hall phase.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا