ﻻ يوجد ملخص باللغة العربية
The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each at half filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane magnetic field. Especially at low electron density, the width of the Coulomb gap at first increases sharply with in-plane field, but then abruptly levels off. This behavior appears to coincide with the known transition from partial to complete spin polarization of the half-filled lowest Landau level. The tunneling gap therefore opens a new window onto the spin configuration of two-dimensional electron systems at high magnetic field.
Motivated by recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] concerning possible thermoelectric signatures of Dirac composite fermions, we perform a systematic experimental study of thermoelectric transport of an ultrahigh-mobility G
In this paper we study the relation between the conventional Fermion-Chern-Simons (FCS) theory of the half-filled Landau level (nu=1/2), and alternate descriptions that are based on the notion of neutral quasi-particles that carry electric dipole mom
We construct an action for the composite Dirac fermion consistent with symmetries of electrons projected to the lowest Landau level. First we construct a generalization of the $g=2$ electron that gives a smooth massless limit on any curved background
Half-filled Landau levels host an emergent Fermi-liquid which displays an instability towards pairing, culminating in a gapped even-denominator fractional quantum Hall ground state. While this pairing may be probed by tuning the polarization of carri
We study the effect of electron-electron interaction and spin on electronic and transport properties of gated graphene nanoribbons (GNRs) in a perpendicular magnetic field in the regime of the lowest Landau level (LL). The electron-electron interacti