ترغب بنشر مسار تعليمي؟ اضغط هنا

We review progress in the global QCD analysis by the CTEQ-TEA group since the publication of CT18 parton distribution functions (PDFs) in the proton. Specifically, we discuss comparisons of CT18 NNLO predictions with the LHC 13 TeV measurements as we ll as with the FNAL SeaQuest and BNL STAR data on lepton pair production. The specialized CT18X PDFs approximating saturation effects are compared with the CT18sx PDFs obtained using NLL/NLO small-$x$ resummation. Short summaries are presented for the special CT18 parton distributions with fitted charm and with lattice QCD inputs. A recent comparative analysis of the impact of deuteron nuclear effects on the parton distributions by the CTEQ-JLab and CTEQ-TEA groups is summarized.
Recently, two photon PDF sets based on implementations of the LUX ansatz into the CT18 global analysis were released. In CT18lux, the photon PDF is calculated directly using the LUX master formula for all scales, $mu$. In an alternative realization, CT18qed, the photon PDF is initialized at the starting scale, $mu_0$, using the LUX formulation and evolved to higher scales $mu(>mu_0)$ with a combined QED+QCD kernel at $mathcal{O}(alpha),~mathcal{O}(alphaalpha_s)$ and $mathcal{O}(alpha^2)$. In the small-$x$ region, the photon PDF uncertainty is mainly induced by the quark and gluon PDFs, through the perturbative DIS structure functions. In comparison, the large-$x$ photon uncertainty comes from various low-energy, nonperturbative contributions, including variations of the inelastic structure functions in the resonance and continuum regions, higher-twist and target-mass corrections, and elastic electromagnetic form factors of the proton. We take the production of doubly-charged Higgs pairs, $(H^{++}H^{--})$, as an example of scenarios beyond the Standard Model to illustrate the phenomenological implications of these photon PDFs at the LHC.
We present a computation for inclusive charged-current deeply-inelastic scattering at NNLO (N$^2$LO) in QCD. Mass-dependent quark contributions are consistently included across a wide range of momentum transfers in the SACOT-$chi$ general-mass scheme . When appropriate, we further include N$^3$LO corrections in the zero-mass scheme. We show theoretical predictions for several experiments with neutrinos over a wide range of energies and at the upcoming Electron-Ion Collider. Our prediction reduces perturbative uncertainties to $sim$1%, sufficient for the high-precision objectives of future charged-current DIS measurements.
Building upon the most recent CT18 global fit, we present a new calculation of the photon content of the proton based on an application of the LUX formalism. In this work, we explore two principal variations of the LUX ansatz. In one approach, which we designate CT18lux, the photon PDF is calculated directly using the LUX formula for all scales, $mu$. In an alternative realization, CT18qed, we instead initialize the photon PDF in terms of the LUX formulation at a lower scale, $mu! sim! mu_0$, and evolve to higher scales with a combined QED+QCD kernel at $mathcal{O}(alpha),~mathcal{O}(alphaalpha_s)$ and $mathcal{O}(alpha^2)$. While we find these two approaches generally agree, especially at intermediate $x$ ($10^{-3}lesssim xlesssim0.3$), we discuss some moderate discrepancies that can occur toward the end-point regions at very high or low $x$. We also study effects that follow from variations of the inputs to the LUX calculation originating outside the pure deeply-inelastic scattering (DIS) region, including from elastic form factors and other contributions to the photon PDF. Finally, we investigate the phenomenological implications of these photon PDFs for the LHC, including high-mass Drell-Yan, vector-boson pair, top-quark pair, and Higgs associated with vector-boson production.
Experimental measurements in deep-inelastic scattering and lepton-pair production on deuterium targets play an important role in the flavor separation of $u$ and $d$ (anti)quarks in global QCD analyses of the parton distribution functions (PDFs) of t he nucleon. We investigate the impact of theoretical corrections accounting for the light-nuclear structure of the deuteron upon the fitted $u, d$-quark, gluon, and other PDFs in the CJ15 and CT18 families of next-to-leading order CTEQ global analyses. The investigation is done using the $L_2$ sensitivity statistical method, which provides a common metric to quantify the strength of experimental constraints on various PDFs and ratios of PDFs in the two distinct fitting frameworks. Using the $L_2$ sensitivity and other approaches, we examine the compatibility of deuteron data sets with other fitted experiments under varied implementations of the deuteron corrections. We find that freely-fitted deuteron corrections modify the PDF uncertainty at large momentum fractions and will be relevant for future PDFs affecting electroweak precision measurements.
Improved knowledge of the nucleon structure is a crucial pathway toward a deeper understanding of the fundamental nature of the QCD interaction, and will enable important future discoveries. The experimental facilities proposed for the next decade of fer a tremendous opportunity to advance the precision of our theoretical predictions to unprecedented levels. In this report we briefly highlight some of the recently developed tools and techniques which, together with data from these new colliders, have the potential to revolutionize our understanding of the QCD theory in the next decade.
We present the new parton distribution functions (PDFs) from the CTEQ-TEA collaboration, obtained using a wide variety of high-precision Large Hadron Collider (LHC) data, in addition to the combined HERA I+II deep-inelastic scattering data set, along with the data sets present in the CT14 global QCD analysis. New LHC measurements in single-inclusive jet production with the full rapidity coverage, as well as production of Drell-Yan pairs, top-quark pairs, and high-$p_T$ $Z$ bosons, are included to achieve the greatest sensitivity to the PDFs. The parton distributions are determined at NLO and NNLO, with each of these PDFs accompanied by error sets determined using the Hessian method. Fast PDF survey techniques, based on the Hessian representation and the Lagrange Multiplier method, are used to quantify the preference of each data set to quantities such as $alpha_s(m_Z)$, and the gluon and strange quark distributions. We designate the main resulting PDF set as CT18. The ATLAS 7 TeV precision $W/Z$ data are not included in CT18, due to their tension with other data sets in the global fit. Alternate PDF sets are generated including the ATLAS precision 7 TeV $W/Z$ data (CT18A), a new scale choice for low-$x$ DIS data (CT18X), or all of the above with a slightly higher choice for the charm mass (CT18Z). Theoretical calculations of standard candle cross sections at the LHC (such as the $gg$ fusion Higgs boson cross section) are presented.
Extraction of the strange quark PDF is a long-standing puzzle. We use the nCTEQ nPDFs with uncertainties to study the impact of the LHC W/Z production data on both the flavor differentiation and nuclear corrections; this complements the information f rom neutrino-DIS data. As the proton flavor determination is dependent on nuclear corrections (from heavy target DIS, for example), LHC heavy ion measurements can also help improve proton PDFs. We introduce a new implementation of the nCTEQ code (nCTEQ++) based on C++ which has a modular strucure and enables us to easily integrate programs such as HOPPET, APPLgrid, and MCFM. Using ApplGrids generated from MCFM, we use nCTEQ++ to perform a preliminary fit including the pPb LHC W/Z vector boson data.
Particle and nuclear physics are moving toward a new generation of experiments to stress-test the Standard Model (SM), search for novel degrees of freedom, and comprehensively map the internal structure of hadrons. Due to the complex nature of QCD an d wide array of past, present, and possible future experiments, measurements taken at these next-generation facilities will inhabit an expansive space of high-energy data. Maximizing the impact of each future collider program will depend on identifying its place within this sprawling landscape. As an initial exploration, we use the recently-developed PDFSense framework to assess the PDF sensitivity of two future high-energy facilities --- the high-luminosity upgrade to the LHC (HL-LHC) and the Large Hadron-electron Collider (LHeC) proposal --- as well as the electron-ion collider (EIC) proposed to map the few-GeV quark-hadron transition region. We report that each of these experimental facilities occupies a unique place in the kinematical parameter space with specialized pulls on particular collinear quantities. As such, there is a clear complementarity among these programs, with an opportunity for each to mutually reinforce and inform the others.
Building upon the PDFSense framework developed in Ref. [1], we perform a comprehensive analysis of the sensitivity of present and future high-energy data to a number of quantities commonly evaluated in lattice gauge theory, with a particular focus on the integrated Mellin moments of nucleon parton distribution functions (PDFs), such as $langle x rangle_{u^+ - d^+}$ and $langle x rangle_{g}$, as well as $x$-dependent quark quasi-distributions -- in particular, that of the isovector combination. Our results demonstrate the potential for lattice calculations and phenomenological quark distributions informed by high-energy experimental data to cooperatively improve the picture of the nucleons collinear structure. This will increasingly be the case as computational resources for lattice calculations further expand, and QCD global analyses continue to grow in sophistication. Our sensitivity analysis suggests that a future lepton-hadron collider would be especially instrumental in providing phenomenological constraints to lattice observables.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا