ترغب بنشر مسار تعليمي؟ اضغط هنا

We have developed a new in situ method to calibrate optical tweezers experiments and simultaneously measure the size of the trapped particle or the viscosity of the surrounding fluid. The positional fluctuations of the trapped particle are recorded w ith a high-bandwidth photodetector. Next, we compute the mean-square displacement, as well as the velocity autocorrelation function of the sphere and compare it to the theory of Brownian motion including hydrodynamic memory effects. A careful measurement and analysis of the time scales characterizing the dynamics of the harmonically bound sphere fluctuating in a viscous medium then directly yields all relevant parameters. Finally, we test the method for different optical trap strengths, with different bead sizes and in different fluids, and we find excellent agreement with the values provided by the manufacturers. The proposed approach overcomes the most commonly encountered limitations in precision when analyzing the power spectrum of position fluctuations in the region around the corner frequency. These low frequencies are usually prone to errors due to drift, limitations in the detection and trap linearity as well as short acquisition times resulting in poor statistics. Furthermore, the strategy can be generalized to Brownian motion in more complex environments, provided the adequate theories are available.
We have investigated the motion of a single optically trapped colloidal particle close to a limiting wall at time scales where the inertia of the surrounding fluid plays a significant role. The velocity autocorrelation function exhibits a complex int erplay due to the momentum relaxation of the particle, the vortex diffusion in the fluid, the obstruction of flow close to the interface, and the harmonic restoring forces due to the optical trap. We show that already a weak trapping force has a significant impact on the velocity autocorrelation function C(t)=<v(t)v(0)> at times where the hydrodynamic memory leads to an algebraic decay. The long-time behavior for the motion parallel and perpendicular to the wall is derived analytically and compared to numerical results. Then, we discuss the power spectral densities of the displacement and provide simple interpolation formulas. The theoretical predictions are finally compared to recent experimental observations.
At fast timescales, the self-similarity of random Brownian motion is expected to break down and be replaced by ballistic motion. So far, an experimental verification of this prediction has been out of reach due to a lack of instrumentation fast and p recise enough to capture this motion. With a newly developed detector, we have been able to observe the Brownian motion of a single particle in an optical trap with 75 MHz bandwidth and sub-{AA}ngstrom spatial precision. We report the first measurements of ballistic Brownian motion as well as the first determination of the velocity autocorrelation function of a Brownian particle. The data are in excellent agreement with theoretical predictions taking into account the inertia of the particle and the surrounding fluid as well as hydrodynamic memory effects.
69 - Sylvia Jeney 2008
The motion of an optically trapped sphere constrained by the vicinity of a wall is investigated at times where hydrodynamic memory is significant. First, we quantify, in bulk, the influence of confinement arising from the trapping potential on the sp heres velocity autocorrelation function $C(t)$. Next, we study the splitting of $C(t)$ into $C_parallel(t)$ and $C_perp(t)$, when the sphere is approached towards a surface. Thereby, we monitor the crossover from a slow $t^{-3/2}$ long-time tail, away from the wall, to a faster $t^{-5/2}$ decay, due to the subtle interplay between hydrodynamic backflow and wall effects. Finally, we discuss the resulting asymmetric time-dependent diffusion coefficients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا