ﻻ يوجد ملخص باللغة العربية
We have investigated the motion of a single optically trapped colloidal particle close to a limiting wall at time scales where the inertia of the surrounding fluid plays a significant role. The velocity autocorrelation function exhibits a complex interplay due to the momentum relaxation of the particle, the vortex diffusion in the fluid, the obstruction of flow close to the interface, and the harmonic restoring forces due to the optical trap. We show that already a weak trapping force has a significant impact on the velocity autocorrelation function C(t)=<v(t)v(0)> at times where the hydrodynamic memory leads to an algebraic decay. The long-time behavior for the motion parallel and perpendicular to the wall is derived analytically and compared to numerical results. Then, we discuss the power spectral densities of the displacement and provide simple interpolation formulas. The theoretical predictions are finally compared to recent experimental observations.
Asymmetrically charged, nonspherical colloidal particles in general perform complex rotations and oblique motions under an electric field. The interplay of electrostatic and hydrodynamic forces complicate the prediction of these motions. We demonstra
The analytical expressions for the time-dependent cross-correlations of the translational and rotational Brownian displacements of a particle with arbitrary shape are derived. The reference center is arbitrary, and the reference frame is such that th
At high area fractions, monolayers of colloidal dimer particles form a degenerate crystal (DC) structure in which the particle lobes occupy triangular lattice sites while the particles are oriented randomly along any of the three lattice directions.
We investigate the tagged-particle motion in a strongly interacting quasi-confined liquid using periodic boundary conditions along the confining direction. Within a mode-coupling theory of the glass transition (MCT) we calculate the self-nonergodicit
Transport properties of a hard-sphere colloidal fluid are investigated by Brownian dynamics simulations. We implement a novel algorithm for the time-dependent velocity-autocorrelation function (VACF) essentially eliminating the noise of the bare rand