ترغب بنشر مسار تعليمي؟ اضغط هنا

We develop a theory of charge storage in ultra-narrow slit-like pores of nano-structured electrodes. Our analysis is based on the Blume-Capel model in external field, which we solve analytically on a Bethe lattice. The obtained solutions allow us to explore the complete phase diagram of confined ionic liquids in terms of the key parameters characterising the system, such as pore ionophilicity, interionic interaction energy and voltage. The phase diagram includes the lines of first and second-order, direct and re-entrant, phase transitions, which are manifested by singularities in the corresponding capacitance-voltage plots. To test our predictions experimentally requires mono-disperse, conducting, ultra-narrow slit pores, permitting only one layer of ions, and thick pore walls, preventing interionic interactions across the pore walls. However, some qualitative features, which distinguish the behavior of ionophilic and ionophobic pores, and its underlying physics, may emerge in future experimental studies of more complex electrode structures.
Nanoporous supercapacitors play an important role in modern energy storage systems, and their modeling is essential to predict and optimize the charging behaviour. Two classes of models have been developed that consist of finite and infinitely long p ores. Here, we show that although both types of models predict qualitatively consistent results, there are important differences emerging due to the finite pore length. In particular, we find that the ion density inside a finite pore is not constant but increases linearly from the pore entrance to the pore end, where the ions form a strongly layered structure. This hinders a direct quantitative comparison between the two models. In addition, we show that although the ion density between the electrodes changes appreciably with the applied potential, this change has a minor effect on charging. Our simulations also reveal a complex charging behaviour, which is adsorption-driven at high voltages, but it is dominated either by co-ion desorption or by adsorption of both types of ions at low voltages, depending on the ion concentration.
Interface localization-delocalization transitions (ILDT) occur in two-phase fluids confined in a slit with competing preferences of the walls for the two fluid phases. At low temperatures the interface between the two phases is localized at one of th e walls. Upon increasing temperature it unbinds. Although intensively studied theoretically and computationally, such transitions have not yet been observed experimentally due to severe challenges in resolving fine details of the fluid structure. Here, using mean field theory and Monte Carlo simulations of the Ising model, we propose to detect these ILDT by using colloids. We show that the finite-size and fluctuation induced force acting on a colloid confined in such a system experiences a vivid change if, upon lowering the temperature, the interface localizes at one of the walls. This change can serve as a more easily accessible experimental indicator of the transition.
103 - Svyatoslav Kondrat 2018
Diffusion is a fundamental phenomenon that occurs ubiquitously in nature and remains the subject of continuous research interest. Understanding diffusion is a key to understanding leaving systems. In this Chapter, I discuss diffusion of macromolecule s under crowding conditions inside living cells. I describe briefly how to characterize, model and measure diffusion properties. The focus is on physics and simulations, with a particular emphasis on the effects important for crowded, biologically relevant systems.
The ion-ion interactions become exponentially screened for ions confined in ultranarrow metallic pores. To study the phase behaviour of an assembly of such ions, called a superionic liquid, we develop a statistical theory formulated on bipartite latt ices, which allows an analytical solution within the Bethe-lattice approach. Our solution predicts the existence of ordered and disordered phases in which ions form a crystal-like structure and a homogeneous mixture, respectively. The transition between these two phases can potentially be first or second order, depending on the ion diameter, degree of confinement and pore ionophobicity. We supplement our analytical results by three-dimensional off-lattice Monte Carlo simulations of an ionic liquid in slit nanopores. The simulations predict formation of ionic clusters and ordered snake-like patterns, leading to characteristic close-standing peaks in the cation-cation and anion-anion radial distribution functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا