ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase behaviour and structure of a superionic liquid in nonpolarized nanoconfinement

52   0   0.0 ( 0 )
 نشر من قبل Svyatoslav Kondrat
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ion-ion interactions become exponentially screened for ions confined in ultranarrow metallic pores. To study the phase behaviour of an assembly of such ions, called a superionic liquid, we develop a statistical theory formulated on bipartite lattices, which allows an analytical solution within the Bethe-lattice approach. Our solution predicts the existence of ordered and disordered phases in which ions form a crystal-like structure and a homogeneous mixture, respectively. The transition between these two phases can potentially be first or second order, depending on the ion diameter, degree of confinement and pore ionophobicity. We supplement our analytical results by three-dimensional off-lattice Monte Carlo simulations of an ionic liquid in slit nanopores. The simulations predict formation of ionic clusters and ordered snake-like patterns, leading to characteristic close-standing peaks in the cation-cation and anion-anion radial distribution functions.


قيم البحث

اقرأ أيضاً

We develop a theory of charge storage in ultra-narrow slit-like pores of nano-structured electrodes. Our analysis is based on the Blume-Capel model in external field, which we solve analytically on a Bethe lattice. The obtained solutions allow us to explore the complete phase diagram of confined ionic liquids in terms of the key parameters characterising the system, such as pore ionophilicity, interionic interaction energy and voltage. The phase diagram includes the lines of first and second-order, direct and re-entrant, phase transitions, which are manifested by singularities in the corresponding capacitance-voltage plots. To test our predictions experimentally requires mono-disperse, conducting, ultra-narrow slit pores, permitting only one layer of ions, and thick pore walls, preventing interionic interactions across the pore walls. However, some qualitative features, which distinguish the behavior of ionophilic and ionophobic pores, and its underlying physics, may emerge in future experimental studies of more complex electrode structures.
Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical particles of length $L$ and diameter $D$, using an improved algorithm to identify the overlap condition between two cylinders. Both the prolat e $L/D>1$ and the oblate $L/D<1$ phase diagrams are reported with no solution of continuity. In the prolate $L/D>1$ case, we find intermediate nematic textrm{N} and smectic textrm{SmA} phases in addition to a low density isotropic textrm{I} and a high density crystal textrm{X} phase, with textrm{I-N-SmA} and textrm{I-SmA-X} triple points. An apparent columnar phase textrm{C} is shown to be metastable as in the case of spherocylinders. In the oblate $L/D<1$ case, we find stable intermediate cubatic textrm{Cub}, nematic textrm{N}, and columnar textrm{C} phases with textrm{I-N-Cub}, textrm{N-Cub-C}, and textrm{I-Cub-C} triple points. Comparison with previous numerical and analytical studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more sophisticated models with important biological applications, such as viruses and nucleosomes.
Water is a ubiquitous liquid with unique physico-chemical properties, whose nature has shaped our planet and life as we know it. Water in restricted geometries has different properties than in bulk. Confinement can prevent low-temperature crystalliza tion into a hexagonal structure, thus creating a state of amorphous water. In this work we introduce a family of synthetic lipids with designed cyclopropyl modification in the hydrophobic chains that exhibit unique liquid-crystalline behaviour at low temperature, enabling maintenance of amorphous water down to 10 K due to nanoconfinement in a bio-mimetic milieu. Small and Wide Angle X-ray Scattering, Elastic and Inelastic Neutron Scattering, Nuclear Magnetic Resonance Spectroscopy and Differential Scanning Calorimetry, complemented by Molecular Dynamics Simulations, unveil a complex lipid/water phase diagram, in which bicontinuous cubic and lamellar liquid crystalline phases containing sub-zero liquid, glassy, or ice water emerge as a competition between the two components, each pushing towards its thermodynamically favoured state.
We extend the Cahn-Landau-de Gennes mean field theory of binary mixtures to understand the wetting thermodynamics of a three phase system, that is in contact with an external surface which prefers one of the phases. We model the system using a phenom enological free energy having three minima corresponding to low, intermediate and high density phases. By systematically varying the textit{(i)} depth of the central minimum, textit{(ii)} the surface interaction parameters, we explore the phase behavior, and wetting characteristics of the system across the triple point corresponding to three phase coexistence. We observe a non-monotonic dependence of the surface tension across the triple point that is associated with a complete to partial wetting transition. The methodology is then applied to study the wetting behaviour of a polymer-liquid crystal mixture in contact with a surface using a renormalised free energy. Our work provides a way to interrogate phase behavior and wetting transitions of biopolymers in cellular environments.
The phase behavior of membrane proteins stems from a complex synergy with the amphiphilic molecules required for their solubilization. We show that ionization of a pH-sensitive surfactant, LDAO, bound to a bacterial photosynthetic protein, the Reacti on Center (RC), leads in a narrow pH range to protein liquid-liquid phase separation in surprisingly stable `droplets, forerunning reversible aggregation at lower pH. Phase segregation is promoted by increasing temperature and hindered by adding salt. RC light-absorption and photoinduced electron cycle are moreover strongly affected by phase segregation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا