ترغب بنشر مسار تعليمي؟ اضغط هنا

The abundance, distribution and inner structure of satellites of galaxy clusters can be sensitive probes of the properties of dark matter. We run 30 cosmological zoom-in simulations with self-interacting dark matter (SIDM), with a velocity-dependent cross-section, to study the properties of subhalos within cluster-mass hosts. We find that the abundance of subhalos that survive in the SIDM simulations are suppressed relative to their cold dark matter (CDM) counterparts. Once the population of disrupted subhalos -- which may host orphan galaxies -- are taken into account, satellite galaxy populations in CDM and SIDM models can be reconciled. However, even in this case, the inner structure of subhalos are significantly different in the two dark matter models. We study the feasibility of using the weak lensing signal from the subhalo density profiles to distinguish between the cold and self-interacting dark matter while accounting for the potential contribution of orphan galaxies. We find that the effects of self-interactions on the density profile of subhalos can appear degenerate with subhalo disruption in CDM, when orphans are accounted for. With current error bars from the Subaru Hyper Suprime-Cam Strategic Program, we find that subhalos in the outskirts of clusters (where disruption is less prevalent) can be used to constrain dark matter physics. In the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time will give precise measurements of the weak lensing profile and can be used to constrain $sigma_T/m$ at the $sim 1$ cm$^2$ g$^{-1}$ level at $vsim 2000$ km s$^{-1}$.
We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev--Zeldovich (SZ) effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energ y Survey (DES). The splashback radius for the complete galaxy sample is consistent with theoretical measurements from CDM-only simulations, and is located at $2.4^{+0.3}_{-0.4}$ Mpc $h^{-1}$. We split the sample based on galaxy color and find significant differences in the profile shapes. Red galaxies and those in the green valley show a splashback-like minimum in their slope profile consistent with theoretical predictions, while the bluest galaxies show a weak feature that appears at a smaller radius. We develop a mapping of galaxies to subhalos in $N$-body simulations by splitting subhalos based on infall time onto the cluster halos. We find that the location of the steepest slope and differences in the shapes of the profiles can be mapped to differences in the average time of infall of galaxies of different colors. The minima of the slope in the galaxy profiles trace a discontinuity in the phase space of dark matter halos. By relating spatial profiles to infall time for galaxies of different colours, we can use splashback as a clock to understand galaxy quenching. We find that red galaxies have on average been in their clusters for over $3.2 ~rm Gyrs$, green galaxies about $2.2 ~rm Gyrs$, while blue galaxies have been accreted most recently and have not reached apocenter. Using the information from the complete radial profiles, we fit a simple quenching model and find that the onset of galaxy quenching in clusters occurs after a delay of about a gigayear, and that galaxies quench rapidly thereafter with an exponential timescale of $0.6$ Gyr.
Gravitational waves produced from the merger of binary neutron stars (BNSs) are accompanied by electromagnetic counterparts, making it possible to identify the associated host galaxy. We explore how properties of the host galaxies relate to the astro physical processes leading to the mergers. It is thought that the BNS merger rate within a galaxy at a given epoch depends primarily on the galaxys star-formation history as well as the underlying merger time-delay distribution of the binary systems. The stellar history of a galaxy, meanwhile, depends on the cosmological evolution of the galaxy through time, and is tied to the growth of structure in the Universe. We study the hosts of BNS mergers in the context of structure formation by populating the Universe Machine simulations with gravitational-wave events~ according to a simple time-delay model. We find that different time-delay distributions predict different properties of the associated host galaxies, including the distributions of stellar mass, star-formation rate, halo mass, and local and large-scale clustering of hosts. BNSs that merge today with short delay times prefer to be in hosts that have high star-formation rates, while those with long delay times live in dense regions within massive halos that have low star formation. We show that with ${mathcal O}(10)$ events from current gravitational-wave detector networks, it is possible to make preliminary distinctions between formation channels which trace stellar mass, halo mass, or star-formation rate. We also find that strategies to follow up gravitational-wave events with electromagnetic telescopes can be significantly optimized using the clustering properties of their hosts.
Non-gravitational interactions between dark matter particles with strong scattering, but relatively small annihilation and dissipation, has been proposed to match various observables on cluster and group scales. In this paper, we present the results from large cosmological simulations which include the effects of different self-interaction scenarios. In particular we explore a model with the differential cross section that can depend on both the relative velocity of the interacting particles and the angle of scattering. We focus on how quantities, such as the stacked density profiles, subhalo counts and the splashback radius change as a function of different forms of self-interaction. We find that self-interactions not only affect the central region of the cluster, the effect well known from previous studies, but also significantly alter the distribution of subhalos and the density of particles out to the splashback radius. Our results suggest that current weak lensing data can already put constraints on the self-interaction cross-section that are only slightly weaker than the Bullet Cluster constraints ($sigma/m lesssim 2$ cm$^2/$g), and future lensing surveys should be able to tighten them even further making halo profiles on cluster scales a competitive probe for DM physics.
Astrophysical and cosmological observations currently provide the only robust, empirical measurements of dark matter. Future observations with Large Synoptic Survey Telescope (LSST) will provide necessary guidance for the experimental dark matter pro gram. This white paper represents a community effort to summarize the science case for studying the fundamental physics of dark matter with LSST. We discuss how LSST will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational couplings to the Standard Model, and compact object abundances. Additionally, we discuss the ways that LSST will complement other experiments to strengthen our understanding of the fundamental characteristics of dark matter. More information on the LSST dark matter effort can be found at https://lsstdarkmatter.github.io/ .
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا