ترغب بنشر مسار تعليمي؟ اضغط هنا

We present in this study a mapping of the optical turbulence (OT) above different astronomical sites. The mesoscale model Meso-NH was used together with the Astro-Meso-Nh package and a set of diagnostic tools allowing for a full 3D investigation of t he Cn2. The diagnostics implemented in the Astro-Meso-Nh, allowing for a full 3D investigation of the OT structure in a volumetric space above different sites, are presented. To illustrate the different diagnostics and their potentialities, we investigated one night and looked at instantaneous fields of meteorologic and astroclimatic parameters. To show the potentialities of this tool for applications in an Observatory we ran the model above sites with very different OT distributions: the antarctic plateau (Dome C, Dome A, South Pole) and a mid-latitude site (Mt. Graham, Arizona). We put particular emphasis on the 2D maps of integrated astroclimatic parameters (seeing, isoplanatic angles) calculated in different slices at different heights in the troposhere. This is an useful tool of prediction and investigation of the turbulence structure. It can support the optimization of the AO, GLAO and MCAO systems running at the focus of the ground-based telescopes.From this studies it emerges that the astronomical sites clearly present different OT behaviors. Besides, our tool allowed us for discriminating these sites.
In two recent papers the mesoscale model Meso-NH, joint with the Astro-Meso-NH package, has been validated at Dome C, Antarctica, for the characterization of the optical turbulence. It has been shown that the meteorological parameters (temperature an d wind speed, from which the optical turbulence depends on) as well as the Cn2 profiles above Dome C were correctly statistically reproduced. The three most important derived parameters that characterize the optical turbulence above the internal antarctic plateau: the surface layer thickness, the seeing in the free-atmosphere and in the total atmosphere showed to be in a very good agreement with observations. Validation of Cn2 has been performed using all the measurements of the optical turbulence vertical distribution obtained in winter so far. In this paper, in order to investigate the ability of the model to discriminate between different turbulence conditions for site testing, we extend the study to two other potential astronomical sites in Antarctica: Dome A and South Pole, which we expect to be characterized by different turbulence conditions. The optical turbulence has been calculated above these two sites for the same 15 nights studied for Dome C and a comparison between the three sites has been performed.
In a recent paper the authors presented an extended study aiming at simulating the classical meteorological parameters and the optical turbulence at Dome C during the winter with the atmospherical mesoscale model Meso-NH. A statistical analysis has b een presented and the conclusions of that paper have been very promising. Wind speed and temperature fields revealed to be very well reconstructed by the Meso-NH model with better performances than what has been achieved with the European Centre for Medium-Range Weather Forecast (ECMWF) global model, especially near the surface. All results revealed to be resolution-dependent and it has been proved that a grid-nesting configuration (3 domains) with a high horizontal resolution (1km) for the innermost domain is necessary to reconstruct all the optical turbulence features with a good correlation to measurements. High resolution simulations provided an averaged surface layer thickness just ~14 m higher than what is estimated by measurements, the seeing in the free atmosphere showed a dispersion from the observed one of just a few hundredths of an arcsecond (~0.05). The unique limitation of the previous study was that the optical turbulence in the surface layer appeared overestimated by the model in both low and high resolution modes. In this study we present the results obtained with an improved numerical configuration. The same 15 nights have been simulated, and we show that the model results now match almost perfectly the observations in all their features: the surface thickness, the seeing in the free atmosphere as well as in the surface layer. This result permits us to investigate now other antarctic sites using a robust numerical model well adapted to the extreme polar conditions (Meso-NH).
Mesoscale model such as Meso-Nh have proven to be highly reliable in reproducing 3D maps of optical turbulence (see Refs. 1, 2, 3, 4) above mid-latitude astronomical sites. These last years ground-based astronomy has been looking towards Antarctica. Especially its summits and the Internal Continental Plateau where the optical turbulence appears to be confined in a shallow layer close to the icy surface. Preliminary measurements have so far indicated pretty good value for the seeing above 30-35 m: 0.36 (see Ref. 5) and 0.27 (see Refs. 6, 7) at Dome C. Site testing campaigns are however extremely expensive, instruments provide only local measurements and atmospheric modelling might represent a step ahead towards the search and selection of astronomical sites thanks to the possibility to reconstruct 3D Cn2 maps over a surface of several kilometers. The Antarctic Plateau represents therefore an important benchmark test to evaluate the possibility to discriminate sites on the same plateau. Our group8 has proven that the analyses from the ECMWF global model do not describe with the required accuracy the antarctic boundary and surface layer in the plateau. A better description could be obtained with a mesoscale meteorological model. In this contribution we present the progress status report of numerical simulations (including the optical turbulence - Cn2) obtained with Meso-Nh above the internal Antarctic Plateau. Among the topic attacked: the influence of different configurations of the model (low and high horizontal resolution), use of the grid-nesting interactive technique, forecasting of the optical turbulence during some winter nights.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا