ترغب بنشر مسار تعليمي؟ اضغط هنا

The wide bandwidth and large number of antennas used in millimeter wave systems put a heavy burden on the power consumption at the receiver. In this paper, using an additive quantization noise model, the effect of analog-digital conversion (ADC) reso lution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance. Results demonstrate that: (i) For both analog and digital combining, there is a maximum bandwidth beyond which the achievable rate decreases; (ii) Depending on the operating regime of the system, analog combiner may have higher rate but digital combining uses less bandwidth when only ADC power consumption is considered, (iii) digital combining may have higher rate when power consumption of all the components in the receiver front-end are taken into account.
The generalized approximate message passing (GAMP) algorithm is an efficient method of MAP or approximate-MMSE estimation of $x$ observed from a noisy version of the transform coefficients $z = Ax$. In fact, for large zero-mean i.i.d sub-Gaussian $A$ , GAMP is characterized by a state evolution whose fixed points, when unique, are optimal. For generic $A$, however, GAMP may diverge. In this paper, we propose adaptive damping and mean-removal strategies that aim to prevent divergence. Numerical results demonstrate significantly enhanced robustness to non-zero-mean, rank-deficient, column-correlated, and ill-conditioned $A$.
The tremendous bandwidth available in the millimeter wave (mmW) frequencies between 30 and 300 GHz have made these bands an attractive candidate for next-generation cellular systems. However, reliable communication at these frequencies depends extens ively on beamforming with very high-dimensional antenna arrays. Estimating the channel sufficiently accurately to perform beamforming can thus be challenging both due to low coherence time and large number of antennas. Also, the measurements used for channel estimation may need to be made with analog beamforming where the receiver can look in only direction at a time. This work presents a novel method for estimation of the receive-side spatial covariance matrix of a channel from a sequence of power measurements made at different angular directions. The method reduces the spatial covariance estimation to a matrix completion optimization problem. To reduce the number of measurements, the optimization can incorporate the low-rank constraints in the channels that are typical in the mmW setting. The optimization is convex and fast, iterative methods are presented to solving the problem. Simulations are presented for both single and multi-path channels using channel models derived from real measurements in New York City at 28 GHz.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا