ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational wave observations of compact binary coalescences provide precision probes of strong-field gravity. There is thus now a standard set of null tests of general relativity (GR) applied to LIGO-Virgo detections and many more such tests propo sed. However, the relation between all these tests is not yet well understood. We start to investigate this by applying a set of standard tests to simulated observations of binary black holes in GR and with phenomenological deviations from GR. The phenomenological deviations include self-consistent modifications to the energy flux in an effective-one-body (EOB) model, the deviations used in the second post-Newtonian (2PN) TIGER and FTA parameterized tests, and the dispersive propagation due to a massive graviton. We consider four types of tests: residuals, inspiral-merger-ringdown consistency, parameterized (TIGER and FTA), and modified dispersion relation. We also check the consistency of the unmodeled reconstruction of the waveforms with the waveform recovered using GR templates. These tests are applied to simulated observations similar to GW150914 with both large and small deviations from GR and similar to GW170608 just with small deviations from GR. We find that while very large deviations from GR are picked up with high significance by almost all tests, more moderate deviations are picked up by only a few tests, and some deviations are not recognized as GR violations by any test at the moderate signal-to-noise ratios we consider. Moreover, the tests that identify various deviations with high significance are not necessarily the expected ones. We also find that the 2PN (1PN) TIGER and FTA tests recover much smaller deviations than the true values in the modified EOB (massive graviton) case. Additionally, we find that of the GR deviations we consider, the residuals test is only able to detect extreme deviations from GR. (Abridged)
We present a systematic comparison of the binary black hole (BBH) signal waveform reconstructed by two independent and complementary approaches used in LIGO and Virgo source inference: a template-based analysis, and a morphology-independent analysis. We apply the two approaches to real events and to two sets of simulated observations made by adding simulated BBH signals to LIGO and Virgo detector noise. The first set is representative of the 10 BBH events in the first Gravitational Wave Transient Catalog (GWTC-1). The second set is constructed from a population of BBH systems with total mass and signal strength in the ranges that ground based detectors are typically sensitive. We find that the reconstruction quality of the GWTC-1 events is consistent with the results of both sets of simulated signals. We also demonstrate a simulated case where the presence of a mismodelled effect in the observed signal, namely higher order modes, can be identified through the morphology-independent analysis. This study is relevant for currently progressing and future observational runs by LIGO and Virgo.
Gravitational waves emitted during the merger of two black holes carry information about the remnant black hole, namely its mass and spin. This information is typically found from the ringdown radiation as the black hole settles to a final state. We find that the remnant black hole spin is already known at the peak amplitude of the gravitational wave strain. Using this knowledge, we present a new method for measuring the final spin that is template independent, using only the chirp mass, the instantaneous frequency of the strain and its derivative at maximum amplitude, all template independent.
We present a detailed investigation into the properties of GW170729, the gravitational wave with the most massive and distant source confirmed to date. We employ an extensive set of waveform models, including new improved models that incorporate the effect of higher-order waveform modes which are particularly important for massive systems. We find no indication of spin-precession, but the inclusion of higher-order modes in the models results in an improved estimate for the mass ratio of $(0.3-0.8)$ at the 90% credible level. Our updated measurement excludes equal masses at that level. We also find that models with higher-order modes lead to the data being more consistent with a smaller effective spin, with the probability that the effective spin is greater than zero being reduced from $99%$ to $94%$. The 90% credible interval for the effective spin parameter is now $(-0.01-0.50)$. Additionally, the recovered signal-to-noise ratio increases by $sim0.3$ units compared to analyses without higher-order modes. We study the effect of common spin priors on the derived spin and mass measurements, and observe small shifts in the spins, while the masses remain unaffected. We argue that our conclusions are robust against systematic errors in the waveform models. We also compare the above waveform-based analysis which employs compact-binary waveform models to a more flexible wavelet- and chirplet-based analysis. We find consistency between the two, with overlaps of $sim 0.9$, typical of what is expected from simulations of signals similar to GW170729, confirming that the data are well-described by the existing waveform models. Finally, we study the possibility that the primary component of GW170729 was the remnant of a past merger of two black holes and find this scenario to be indistinguishable from the standard formation scenario.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا