ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring Spin of the Remnant Black Hole from Maximum Amplitude

60   0   0.0 ( 0 )
 نشر من قبل Deborah Ferguson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational waves emitted during the merger of two black holes carry information about the remnant black hole, namely its mass and spin. This information is typically found from the ringdown radiation as the black hole settles to a final state. We find that the remnant black hole spin is already known at the peak amplitude of the gravitational wave strain. Using this knowledge, we present a new method for measuring the final spin that is template independent, using only the chirp mass, the instantaneous frequency of the strain and its derivative at maximum amplitude, all template independent.



قيم البحث

اقرأ أيضاً

Large dark matter overdensities can form around black holes of astrophysical and primordial origin as they form and grow. This dark dress inevitably affects the dynamical evolution of binary systems, and induces a dephasing in the gravitational wavef orm that can be probed with future interferometers. In this paper, we introduce a new analytical model to rapidly compute gravitational waveforms in presence of an evolving dark matter distribution. We then present a Bayesian analysis determining when dressed black hole binaries can be distinguished from GR-in-vacuum ones and how well their parameters can be measured, along with how close they must be to be detectable by the planned Laser Interferometer Space Antenna (LISA). We show that LISA can definitively distinguish dark dresses from standard binaries and characterize the dark matter environments around astrophysical and primordial black holes for a wide range of model parameters. Our approach can be generalized to assess the prospects for detecting, classifying, and characterizing other environmental effects in gravitational wave physics.
Observations of gravitational waves and their electromagnetic counterparts may soon uncover the existence of coalescing compact binary systems formed by a stellar-mass black hole and a neutron star. These mergers result in a remnant black hole, possi bly surrounded by an accretion disk. The mass and spin of the remnant black hole depend on the properties of the coalescing binary. We construct a map from the binary components to the remnant black hole using a sample of numerical-relativity simulations of different mass ratios $q$, (anti-)aligned dimensionless spins of the black hole $a_{rm BH}$, and several neutron star equations of state. Given the binary total mass, the mass and spin of the remnant black hole can therefore be determined from the three parameters $(q,a_{rm BH},Lambda)$, where $Lambda$ is the tidal deformability of the neutron star. Our models also incorporate the binary black hole and test-mass limit cases and we discuss a simple extension for generic black hole spins. We combine the remnant characterization with recent population synthesis simulations for various metallicities of the progenitor stars that generated the binary system. We predict that black-hole-neutron-star mergers produce a population of remnant black holes with masses distributed around $7M_odot$ and $9M_odot$. For isotropic spin distributions, nonmassive accretion disks are favoured: no bright electromagnetic counterparts are expected in such mergers.
The spin of the final black hole in the coalescence of nonspinning black holes is determined by the ``residual orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole and the gravitational bursts in a series of orbits ranging from almost direct infall to numerous orbits before infall that exhibit multiple bursts of radiation in the merger process. We show that the final black hole gets a maximum spin parameter $a/M_h le 0.78$, and this maximum occurs for initial orbital angular momentum $L approx M^2_h$.
115 - Lam Hui , Daniel Kabat , Xinyu Li 2019
We show that a black hole surrounded by scalar dark matter develops scalar hair. This is the generalization of a phenomenon pointed out by Jacobson, that a minimally coupled scalar with a non-trivial time dependence far away from the black hole would endow the black hole with hair. In our case, the time dependence arises from the oscillation of a scalar field with a non-zero mass. We systematically explore the scalar profile around the black hole for different scalar masses. In the small mass limit, the scalar field has a $1/r$ component at large radius $r$, consistent with Jacobsons result. In the large mass limit (with the Compton wavelength of order of the horizon or smaller), the scalar field has a $1/r^{3/4}$ profile yielding a pile-up close to the horizon, while distinctive nodes occur for intermediate masses. Thus, the dark matter profile around a black hole, while challenging to measure, contains information about the dark matter particle mass. As an application, we consider the case of the supermassive black hole at the center of M87, recently imaged by the Event Horizon Telescope. Its horizon size is roughly the Compton wavelength of a scalar particle of mass $10^{-20}$ eV. We consider the implications of the expected scalar pile-up close to the horizon, for fuzzy dark matter at a mass of $10^{-20}$ eV or below.
We investigate a recently proposed method for measuring the Hubble constant from gravitational wave detections of binary black hole coalescences without electromagnetic counterparts. In the absence of a direct redshift measurement, the missing inform ation on the left-hand side of the Hubble-Lema^itre law is provided by the statistical knowledge on the redshift distribution of sources. We assume that source distribution in redshift depends on just one unknown hyper-parameter, modeling our ignorance of the astrophysical binary black hole distribution. With tens of thousands of these black sirens -- a realistic figure for the third generation detectors Einstein Telescope and Cosmic Explorer -- an observational constraint on the value of the Hubble parameter at percent level can be obtained. This method has the advantage of not relying on electromagnetic counterparts, which accompany a very small fraction of gravitational wave detections, nor on often unavailable or incomplete galaxy catalogs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا