ترغب بنشر مسار تعليمي؟ اضغط هنا

The standard model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supern ovae so we can perform rigorous statistical tests to check whether these standardisable candles indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
168 - Paul Hunt , Subir Sarkar 2013
Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation) which generated it, and for estimating the cosmological parameters from observations of the cos mic microwave background and large-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallows $C_p$ method give optimal results. We apply our inversion procedure to data from the Wilkinson Microwave Anisotropy Probe, other ground-based small angular scale CMB experiments, and the Sloan Digital Sky Survey. The reconstructed spectrum (assuming the standard $Lambda$CDM cosmology) is emph{not} scale-free but has an infrared cutoff at $k lesssim 5 times 10^{-4}; mathrm{Mpc}^{-1}$ (due to the anomalously low CMB quadrupole) and several features with $sim 2 sigma$ significance at $k/mathrm{Mpc}^{-1} sim$ 0.0013--0.0025, 0.0362--0.0402 and 0.051--0.056, reflecting the `WMAP glitches. To test whether these are indeed real will require more accurate data, such as from the Planck satellite and new ground-based experiments.
We compare predictions for high energy neutrino and anti-neutrino deep inelastic scattering cross-sections within the conventional DGLAP formalism of next-to-leading order QCD, using the latest parton distribution functions such as CT10, HERAPDF1.5 a nd MSTW08 and taking account of PDF uncertainties. From this we derive a benchmark cross-section and uncertainty which is consistent with the results obtained earlier using the ZEUS-S PDFs. We advocate the use of this for analysing data from neutrino telescopes, in order to facilitate comparison between their results.
The extraction of a haze from the WMAP microwave skymaps is based on subtraction of known foregrounds, viz. free-free (bremsstrahlung), thermal dust and synchrotron, each traced by other skymaps. While the 408 MHz all-sky survey is used for the synch rotron template, the WMAP bands are at tens of GHz where the spatial distribution of the radiating cosmic ray electrons ought to be quite different because of the energy-dependence of their diffusion in the Galaxy. The systematic uncertainty this introduces in the residual skymap is comparable to the claimed haze and can, for certain source distributions, have a very similar spectrum and latitudinal profile and even a somewhat similar morphology. Hence caution must be exercised in interpreting the haze as a physical signature of, e.g., dark matter annihilation in the Galactic centre.
Multiple inflation is a model based on N=1 supergravity wherein there are sudden changes in the mass of the inflaton because it couples to flat direction scalar fields which undergo symmetry breaking phase transitions as the universe cools. The resul ting brief violations of slow-roll evolution generate a non-gaussian signal which we find to be oscillatory and yielding f_NL ~ 5-20. This is potentially detectable by e.g. Planck but would require new bispectrum estimators to do so. We also derive a model-independent result relating the period of oscillations of a phase transition during inflation to the period of oscillations in the primordial curvature perturbation generated by the inflaton.
We discuss recent observations of high energy cosmic ray positrons and electrons in the context of hadronic interactions in supernova remnants, the suspected accelerators of galactic cosmic rays. Diffusive shock acceleration can harden the energy spe ctrum of secondary positrons relative to that of the primary protons (and electrons) and thus explain the rise in the positron fraction observed by PAMELA above 10 GeV. We normalize the hadronic interaction rate by holding pion decay to be responsible for the gamma-rays detected by HESS from some SNRs. By simulating the spatial and temporal distribution of SNRs in the Galaxy according to their known statistics, we are able to then fit the electron (plus positron) energy spectrum measured by Fermi. It appears that IceCube has good prospects for detecting the hadronic neutrino fluxes expected from nearby SNRs.
54 - Paul Hunt 2009
Measurements of the SNe Ia Hubble diagram which suggest that the universe is accelerating due to the effect of dark energy may be biased because we are located in a 200-300 Mpc underdense void which is expanding 20-30% faster than the average rate. W ith the smaller global Hubble parameter, the WMAP-5 data on cosmic microwave background anisotropies can be fitted without requiring dark energy if there is some excess power in the spectrum of primordial perturbations on 100 Mpc scales. The SDSS data on galaxy clustering can also be fitted if there is a small component of hot dark matter in the form of 0.5 eV mass neutrinos. We show however that if the primordial fluctuations are gaussian, the expected variance of the Hubble parameter and the matter density are far too small to allow such a large local void. Nevertheless many such large voids have been identified in the SDSS LRG survey in a search for the late-ISW effect due to dark energy. The observed CMB temperature decrements imply that they are nearly empty, thus these real voids too are in gross conflict with the concordance LCDM model. The recently observed high peculiar velocity flow presents another challenge for the model. Therefore whether a large local void actually exists must be tested through observations and cannot be dismissed a priori.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا