ﻻ يوجد ملخص باللغة العربية
Measurements of the SNe Ia Hubble diagram which suggest that the universe is accelerating due to the effect of dark energy may be biased because we are located in a 200-300 Mpc underdense void which is expanding 20-30% faster than the average rate. With the smaller global Hubble parameter, the WMAP-5 data on cosmic microwave background anisotropies can be fitted without requiring dark energy if there is some excess power in the spectrum of primordial perturbations on 100 Mpc scales. The SDSS data on galaxy clustering can also be fitted if there is a small component of hot dark matter in the form of 0.5 eV mass neutrinos. We show however that if the primordial fluctuations are gaussian, the expected variance of the Hubble parameter and the matter density are far too small to allow such a large local void. Nevertheless many such large voids have been identified in the SDSS LRG survey in a search for the late-ISW effect due to dark energy. The observed CMB temperature decrements imply that they are nearly empty, thus these real voids too are in gross conflict with the concordance LCDM model. The recently observed high peculiar velocity flow presents another challenge for the model. Therefore whether a large local void actually exists must be tested through observations and cannot be dismissed a priori.
We present a Gaussianity analysis of the WMAP 5-year Cosmic Microwave Background (CMB) temperature anisotropy data maps. We use several third order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear c
We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla flat adiabatic L
We derive constraints on the matter density Om and the amplitude of matter clustering sig8 from measurements of large scale weak lensing (projected separation R=5-30hmpc) by clusters in the Sloan Digital Sky Survey MaxBCG catalog. The weak lensing si
We investigate the effect of small scale inhomogeneities on standard candle observations, such as type Ia supernovae (SNe) observations. Existence of the small scale inhomogeneities may cause a tension between SNe observations and other observations
In this paper we set bounds on the radiation content of the Universe and neutrino properties by using the WMAP-5 year CMB measurements complemented with most of the existing CMB and LSS data (WMAP5+All),imposing also self-consistent BBN constraints o