ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal conductivity, point contact spectroscopy, angle-resolved photoemission and Raman spectroscopy measurements were performed on BaFe1.9Pt0.1As2 single crystals obtained from the same synthesis batch in order to investigate the superconducting en ergy gap structure using multiple techniques. Low temperature thermal conductivity was measured in the superconducting state as a function of temperature and magnetic field, revealing an absence of quasiparticle excitations in the T=0 limit up to 15 T applied magnetic fields. Point-contact Andreev reflection spectroscopy measurements were performed as a function of temperature using the needle-anvil technique, yielding features in the conductance spectra at both 2.5 meV and 7.0 meV scales consistent with a multi-gap scenario. Angle-resolved photoemission spectroscopy probed the electronic band structure above and below the superconducting transition temperature of T_c=23 K, revealing an isotropic gap of magnitude ~3 meV on both electron and hole pockets. Finally, Raman spectroscopy was used to probe quasiparticle excitations in multiple channels, showing a threshold energy scale of 3 meV below T_c. Overall, we find strong evidence for an isotropic gap structure with no nodes or deep minima in this system, with a 3 meV magnitude gap consistently observed and a second, larger gap suggested by point contact spectroscopy measurements. We discuss the implications that the combination of these results reveal about the superconducting order parameter in the BaFe1-xPtxAs2 system and how this relates to similar substituted iron pnictides.
The experimental transport scattering rate was determined for a wide range of optimally doped transition metal-substituted FeAs-based compounds with the ThCr2Si2 (122) crystal structure. The maximum transition temperature Tc for several Ba-, Sr-, and Ca-based 122 systems follows a universal rate of suppression with increasing scattering rate indicative of a common pair-breaking mechanism. Extraction of standard pair-breaking parameters puts a limit of sim26 K on the maximum Tc for all transition metal-substituted 122 systems, in agreement with experimental observations, and sets a critical scattering rate of 1.5x10^14 s^-1 for the suppression of the superconducting phase. The observed critical scattering rate is much weaker than that expected for a sign-changing order parameter, providing important constraints on the nature of the superconducting gap in the 122 family of iron-based superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا